如何在生存分析与Cox回归中计算IDI,NRI指标

2023-10-12 04:10

本文主要是介绍如何在生存分析与Cox回归中计算IDI,NRI指标,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文链接:http://tecdat.cn/?p=6095

读取样本数据

D=D\[!is.na(apply(D,1,mean)),\] ; dim(D)
## \[1\] 416   7

查询部分数据(结果和预测因子)

head(D)
##   time status      age albumin edema protime bili
## 1  400      1 58.76523    2.60   1.0    12.2 14.5
## 2 4500      0 56.44627    4.14   0.0    10.6  1.1
## 3 1012      1 70.07255    3.48   0.5    12.0  1.4
## 4 1925      1 54.74059    2.54   0.5    10.3  1.8
## 5 1504      0 38.10541    3.53   0.0    10.9  3.4
## 6 2503      1 66.25873    3.98   0.0    11.0  0.8

模型0和模型1的结果数据和预测变量集

outcome=D\[,c(1,2)\]
covs1<-as.matrix(D\[,c(-1,-2)\])
covs0<-as.matrix(D\[,c(-1,-2, -7)\])head(outcome)
##   time status
## 1  400      1
## 2 4500      0
## 3 1012      1
## 4 1925      1
## 5 1504      0
## 6 2503      1
``````
head(covs0)
##        age albumin edema protime
## 1 58.76523    2.60   1.0    12.2
## 2 56.44627    4.14   0.0    10.6
## 3 70.07255    3.48   0.5    12.0
## 4 54.74059    2.54   0.5    10.3
## 5 38.10541    3.53   0.0    10.9
## 6 66.25873    3.98   0.0    11.0
``````
head(covs1)
##        age albumin edema protime bili
## 1 58.76523    2.60   1.0    12.2 14.5
## 2 56.44627    4.14   0.0    10.6  1.1
## 3 70.07255    3.48   0.5    12.0  1.4
## 4 54.74059    2.54   0.5    10.3  1.8
## 5 38.10541    3.53   0.0    10.9  3.4
## 6 66.25873    3.98   0.0    11.0  0.8

点击标题查阅往期内容

2616eec7bc40c3812a9d2e7e0a91434c.jpeg

R语言生存分析数据分析可视化案例

outside_default.png

左右滑动查看更多

outside_default.png

01

ecad16e905f8d71c40406760fe2a6e99.png

02

07db4181e9fe3f44a2d582421f2ed932.png

03

0dfabb86c92fed7ae8bcfa2de0589f19.png

04

ed59a4e046d6424f18a2c64b539f3a89.png

推理  

<span style="color:#333333"><span style="color:#333333"><code><span style="color:#000000">t0</span><span style="color:#687687">=</span><span style="color:#009999">365</span><span style="color:#687687">*</span><span style="color:#009999">5</span>
<span style="color:#000000">x</span><span style="color:#687687"><-</span><span style="color:#000000">IDI </span><span style="color:#687687">(</span><span style="color:#000000">outcome</span>, <span style="color:#000000">covs0</span>, <span style="color:#000000">covs1</span>, <span style="color:#000000">t0</span>, <span style="color:#000000">npert</span><span style="color:#687687">=</span><span style="color:#009999">200</span><span style="color:#687687">)</span> ;</code></span></span>

输出 

##     Est. Lower Upper p-value
## M1 0.090 0.052 0.119       0
## M2 0.457 0.340 0.566       0
## M3 0.041 0.025 0.062       0

M1表示IDI

M2表示NRI

M3表示中位数差异

图形演示

ac9370f3858328703518193a4f5f3f33.png



c47f4ee43110ea90cfa4e8381bc7982f.jpeg

本文摘选R语言如何在生存分析与Cox回归中计算IDI,NRI指标,点击“阅读原文”获取全文完整资料。


点击标题查阅往期内容

R语言中的生存分析Survival analysis晚期肺癌患者4例

R语言使用限制平均生存时间RMST比较两条生存曲线分析肝硬化患者

R语言生存分析: 时变竞争风险模型分析淋巴瘤患者

R语言生存分析可视化分析

R语言中生存分析模型的时间依赖性ROC曲线可视化

R语言生存分析数据分析可视化案例

R语言ggsurvplot绘制生存曲线报错 : object of type ‘symbol‘ is not subsettab

R语言如何在生存分析与Cox回归中计算IDI,NRI指标

R语言绘制生存曲线估计|生存分析|如何R作生存曲线图

R语言解释生存分析中危险率和风险率的变化

R语言中的生存分析Survival analysis晚期肺癌患者4例

396eaca0dbd4d0000b24032b76951775.png

fa35547fc3d074210adec6d94ac125c2.jpeg

fb4bad0250ed3d83c42c4327dafd97d8.png

这篇关于如何在生存分析与Cox回归中计算IDI,NRI指标的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/193138

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专