从猫狗不分到实时识别准确率超99%,计算机图像是如何做到的?

2023-10-12 02:59

本文主要是介绍从猫狗不分到实时识别准确率超99%,计算机图像是如何做到的?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CDA数据分析师 出品

编译:Mika
在这里插入图片描述

【导读】
十年前,研究人员认为让计算机来区分猫和狗几乎是不可能的。如今,计算机视觉识别的准确率已超过99%。Joseph Redmon通过一个叫YOLO的开源目标检测方法,可以迅速识别图像和视频中的目标。

10年前,计算机视觉研究者认为,要让一台电脑去分辨出一只猫和狗的不同之处,这几乎是不可能的,即便是在当时人工智能已经取得了重大突破的情况下。
在这里插入图片描述
在这里插入图片描述

从猫狗不分到实时识别准确率超99%,计算机图像是如何做到的?
Joseph Redmon家养的猫

从猫狗不分到实时识别准确率超99%,计算机图像是如何做到的?
Joseph Redmon家养的狗

但如今我们已经可以做到让它的正确率在99%以上。这个方法叫做图像分类,给它一张图,再给这张图贴上标签。通过这种方式,计算机就可以知道数千种的分类。

我是华盛顿大学的一名研究生,我正致力于一个名叫Darknet的项目,这是一个用来训练和测试计算机视觉模型的神经网络结构。
在这里插入图片描述

从猫狗不分到实时识别准确率超99%,计算机图像是如何做到的?
Joseph Redmon所进行的Darknet项目

让我们来看看Darknet是如何看待这张图片。
在这里插入图片描述

从猫狗不分到实时识别准确率超99%,计算机图像是如何做到的?
当我们在这张图片上运行识别器时,我们注意到,它不仅能判断出图片上是猫是狗,还能给出它是哪个品种的预测。这就是我们目前所达到的粒度级别。

它的预测是正确的,我的狗的确是一只阿拉斯加雪橇犬。

很明显,我们在图像识别上取得了惊人的进步。但是如果我们对这样一张图片运行识别器,会如何呢?
在这里插入图片描述

从猫狗不分到实时识别准确率超99%,计算机图像是如何做到的?
看一下,我们看到识别器给出了一个非常相似的预测。而且是正确的,图中是有一只阿拉斯加雪橇犬。但只使用这一个标签,我们并不能真正的了解这张图片,我们需要更强大的检测器。

我正在研究一个叫做目标检测的问题,也就是尝试将一张图上的所有目标物都找出来,然后将它们分别框起来,再加上标注。

这就是我们对这张照片运行检测器时所发生的。基于这样的结果,我们可以用计算机视觉算法做更多的事情。

我们发现,它知道这里有一只猫和一只狗。知道它们的相对位置,它们的大小,甚至还知道一些额外的信息,例如背景里有一本书。
在这里插入图片描述

从猫狗不分到实时识别准确率超99%,计算机图像是如何做到的?
如果你想建立一个基于计算机视觉的系统,比如说无人驾驶汽车或者机器人系统,这就是你想要得到的信息。你需要一个能与物质世界互动的系统。

速度对于目标检测至关重要
当我最开始开展目标检测项目时,它要花20秒去处理一张图片。

为了理解为什么速度在这个领域是如此重要。举一个例子,这是一个2秒钟就能处理一张图片的检测器。这个检测器的速度要比处理每张图需要20秒的检测器快10倍。可以看到在它做出预测的时候,被检测的世界已经发生变化了。这对于一个应用来说是没有多大用处的。
在这里插入图片描述

从猫狗不分到实时识别准确率超99%,计算机图像是如何做到的?
每2秒处理一张图
在这里插入图片描述

如果我们将它的速度再提升10倍,这个检测器每秒可处理5张画面,这就好很多了。

从猫狗不分到实时识别准确率超99%,计算机图像是如何做到的?
每秒处理5张图

但是,举个例子。如果有任何重大的移动,它就反应不过来了。我可不想让这样的一个系统来驾驶我的汽车。

这是在我电脑上运行的实时检测系统。当我在移动时,它能顺利地追踪我。而且它强大到能适应不同的物体大小、姿势、向前、向后的改变,很了不起。
在这里插入图片描述

从猫狗不分到实时识别准确率超99%,计算机图像是如何做到的?
实时检测系统

如果我们想要建造一个基于计算机视觉的系统,那么这就是我们真正需要的。

仅仅是几年的时间,我们就从每张图20秒提升到了每张图20毫秒,速度提高了1000倍。我们是如何做到的呢?

目标检测将图片分成小区域进行识别
过去,目标检测系统会将这张图片分成很多小区域,然后在每一块区域运行一下识别器。在识别器中获得最高分数的输出就会被认为是这张图片的检测结果。这涉及到要在一张图片上运行数千次识别器,以及数千次的神经网络评估才能获得检测结果。
在这里插入图片描述

从猫狗不分到实时识别准确率超99%,计算机图像是如何做到的?
而现在,我们训练了可以做出所有检测的单一网络,它能同时生成边界盒和类别概率。

使用我们的系统,不需要为了生成检测结果去重复上千数次地看同一张图片,只看一次就行了。这也是为什么我们称之为,目标检测的"YOLO(you only look once)法"(只看一次)。
在这里插入图片描述

从猫狗不分到实时识别准确率超99%,计算机图像是如何做到的?
有了这个速度,我们就不仅限于识别图像了,还可以实时处理视频。现在我们不仅看到了猫和狗,还能看到它们走来走去,互相嘻戏。
在这里插入图片描述

从猫狗不分到实时识别准确率超99%,计算机图像是如何做到的?
这是一个我们在微软的COCO数据库上,用80种不同种类的物品训练过的检测器。包含了各种东西,像勺子、叉子、碗等常见物品。
在这里插入图片描述

从猫狗不分到实时识别准确率超99%,计算机图像是如何做到的?
还有各种奇特的东西,动物、汽车、斑马、长颈鹿。
在这里插入图片描述

从猫狗不分到实时识别准确率超99%,计算机图像是如何做到的?
现在我们要做点儿有趣的事情,我们的摄像头将要对准观众区看看能检测出什么。

我们把检测阀值调低一点,这样就可以找出更多的观众。看下我们能不能找出这些停车标志,我们发现了一些背包。所有这些都是在电脑上实时处理的。

从猫狗不分到实时识别准确率超99%,计算机图像是如何做到的?
请大家记住,这是一个通用的目标检测系统。因此我们可以将它训练用于任何领域的图像识别。

拓展到自动驾驶汽车、机器人甚至癌症检测等应用领域
我们在无人驾驶汽车中,用来发现停车标志 行人和自行车的代码,同样可以用于在组织活检中找出癌细胞。全球已经有很多研究者正在利用这一技术在医学、机器人学等方面取得了进展。

今天早上,我刚读到一篇文章,人们在内罗毕国家公园对动物数量进行普查,使用了YOLO作为检测系统的一部分。因为Darknet是一个开源项目,在公共领域任何人都可以免费使用。

但是我们想要让检测器能被更多人使用,也更好用因此通过结合模型优化,网络二值化和近似法,我们实际上已经可以在手机上进行目标检测了。
在这里插入图片描述

从猫狗不分到实时识别准确率超99%,计算机图像是如何做到的?
我真的很激动,因为我们在初级计算机视觉问题上有了强大的解决方案,同时任何人都可以使用它来做些什么。

接下来就看所有在座的各位,以及世界上所有能够使用这个软件的人了。我已经等不及想要看看,人们会用这一技术创造出什么来了,谢谢大家。

这篇关于从猫狗不分到实时识别准确率超99%,计算机图像是如何做到的?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/192766

相关文章

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

计算机视觉工程师所需的基本技能

一、编程技能 熟练掌握编程语言 Python:在计算机视觉领域广泛应用,有丰富的库如 OpenCV、TensorFlow、PyTorch 等,方便进行算法实现和模型开发。 C++:运行效率高,适用于对性能要求严格的计算机视觉应用。 数据结构与算法 掌握常见的数据结构(如数组、链表、栈、队列、树、图等)和算法(如排序、搜索、动态规划等),能够优化代码性能,提高算法效率。 二、数学基础

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

java计算机毕设课设—停车管理信息系统(附源码、文章、相关截图、部署视频)

这是什么系统? 资源获取方式在最下方 java计算机毕设课设—停车管理信息系统(附源码、文章、相关截图、部署视频) 停车管理信息系统是为了提升停车场的运营效率和管理水平而设计的综合性平台。系统涵盖用户信息管理、车位管理、收费管理、违规车辆处理等多个功能模块,旨在实现对停车场资源的高效配置和实时监控。此外,系统还提供了资讯管理和统计查询功能,帮助管理者及时发布信息并进行数据分析,为停车场的科学

Clion不识别C代码或者无法跳转C语言项目怎么办?

如果是中文会显示: 此时只需要右击项目,或者你的源代码目录,将这个项目或者源码目录标记为项目源和头文件即可。 英文如下:

《计算机视觉工程师养成计划》 ·数字图像处理·数字图像处理特征·概述~

1 定义         从哲学角度看:特征是从事物当中抽象出来用于区别其他类别事物的属性集合,图像特征则是从图像中抽取出来用于区别其他类别图像的属性集合。         从获取方式看:图像特征是通过对图像进行测量或借助算法计算得到的一组表达特性集合的向量。 2 认识         有些特征是视觉直观感受到的自然特征,例如亮度、边缘轮廓、纹理、色彩等。         有些特征需要通