php爬虫严选,续爬取严选文胸数据之后,我深夜爬取了男性内裤数据,结果……...

2023-10-11 17:30

本文主要是介绍php爬虫严选,续爬取严选文胸数据之后,我深夜爬取了男性内裤数据,结果……...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这不马上就响应大家的号召,通过爬取网易严选的评论数据来给大家分析分析,看看有什么发现。

爬取数据

首先,我们在网易严选的搜索框输入关键词“男士内裤”,页面搜索出来男士内裤的产品列表界面:

201353726_2_20200905083827912搜索结果

我们点开第一个商品,点击“评论”,就可以看到如下信息:

201353726_3_2020090508382837评论信息

我们分析请求列表,就可以很容易地发现评论数据是通过 https://you.163.com/xhr/comment/listByItemByTag.json 这个请求来获取的。然后我们过滤请求参数,去掉不是必传的参数,最终发现 itemId 和 page 两个参数是必须的。

itemId 是指商品的ID,page 就是指的请求的页码,默认每页记录数是40。所以我们要获取评论数据的前提是获取到对应的商品ID。

我们是从搜索页面点击产品进入商品详情页的,所以搜索页面的商品列表里面肯定存在每一个商品的商品ID,我们回到搜索产品列表页,寻找搜索商品的请求:

201353726_4_20200905083828130商品列表

同样的,我们在搜索界面的请求分析中,找到了 http://you.163.com/xhr/search/search.json 这个请求,逐个分析请求参数后发现,我们只需要 keyword 和 page 两个参数即可。

请求分析完成后,我们就可以来码代码了。代码如下:# 获取商品列表def search_keyword(keyword):uri = 'https://you.163.com/xhr/search/search.json'query = {'keyword': keyword,'page': 1}try:res = requests.get(uri, params=query).json()result = res['data']['directly']['searcherResult']['result']product_id = []for r in result:product_id.append(r['id'])return product_idexcept:raise# 获取评论def details(product_id):url = 'https://you.163.com/xhr/comment/listByItemByTag.json'try:C_list = []for i in range(1, 100):query = {'itemId': product_id,'page': i,}res = requests.get(url, params=query).json()if not res['data']['commentList']:breakprint('爬取第 %s 页评论' % i)commentList = res['data']['commentList']C_list.extend(commentList)time.sleep(1)return C_listexcept:raiseproduct_id = search_keyword('男士内裤')r_list = []for p in product_id:r_list.extend(details(p))with open('./briefs.txt', 'w') as f:for r in r_list:try:f.write(json.dumps(r, ensure_ascii=False) '\n')except:print('出错啦')

为了简单起见,我抓取了首页的40件商品的评论数,将结果保存在 briefs.txt 文件中。文件数据的预览如下:

201353726_5_20200905083828255存储数据

分析数据

抓取完数据后,我们就可以进入探索环节了,我想从颜色、尺码、评论三个角度分析数据,看看男士们内裤的一些“特点”。

我们来看看数据结构的特点:{  'skuInfo': [    '颜色:黑色',    '尺码:M'  ],  'frontUserName': 'S****、',  'frontUserAvatar': 'https://yanxuan.nosdn.127.net/0da37937c896cac1955bda8522d5754f.jpg',  'content': '非常好',  'createTime': 1592965119969,  'picList': [],  'commentReplyVO': null,  'memberLevel': 5,  'appendCommentVO': null,  'star': 5,  'itemId': 3544005}

仔细观察这条评论数据,我们可以看到颜色和尺码都放在 skuInfo 这个数组里面,评论是放在 content 字段里面。同时,我们多翻一些数据就可以发现,颜色有好几种格式:单条装的颜色,例如:颜色:浅麻灰

多条装的颜色,例如:颜色:(黑色 麻灰 浅麻灰)3条

自选多条的颜色,例如:颜色:黑色 藏青色

其他,例如:规格:5条装

这里,最后一种无法分辨出颜色,我准备过滤掉。其他几种,去除掉干扰,通过“ ”就可以拆分出颜色来。

而尺码数据格式是统一的,可以直接获取。

我将颜色和尺码都做成柱状图来展示,而评论就用词云来展示。最终的效果图如下:

201353726_6_20200905083828365颜色分布

颜色并没有出乎我的意料,黑色遥遥领先,不过,如果把几种灰色加起来的话,可能超过了黑色。总之,黑色和灰色是大众的选择。

201353726_7_20200905083828537尺寸分布

尺寸嘛,前三名是XL、L和XXL,不过XL和L相差不大。

201353726_8_20200905083828646评论词云

从评论可以看出,不论是男性还是女性,对于内衣的选择,舒适度永远是第一的,质量其次。想想也是的,质量再好,穿着不舒服,是有点淡淡的忧伤~

总结

网易严选的受众群体是35岁以下的青年人,这个数据分析的结果也可以反应这个年龄群体的普遍选择。所以,广大男青年们,在你们嘲笑女性尺码多数是13的同时,不要忘了人还没到中年,腰包没鼓起来,腰带已经鼓起来了。多运动多注重身体管理吧!

这篇关于php爬虫严选,续爬取严选文胸数据之后,我深夜爬取了男性内裤数据,结果……...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/189676

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者