【CVPR 2022】QueryDet:加速高分辨率小目标检测

2023-10-10 18:10

本文主要是介绍【CVPR 2022】QueryDet:加速高分辨率小目标检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大连不负众望,疫情了,我们又封校了,可能初步封个5678天,微笑jpg

论文地址:https://arxiv.org/pdf/2103.09136.pdf
项目地址:https://github.com/ ChenhongyiYang/QueryDet-PyTorch

1. 简介

背景:对小目标检测的性能和效果不满意

解决办法:先用低分辨率的图片预测到小目标的粗定位;用这些粗位置稀疏引导的高分辨率特征计算出准确的预测结果。

小目标检测中出现性能衰减原因:

(1)由于下采样操作导致引导小目标的特征消失,或被background中的噪声污染。

(2)低分辨率特征对应的感受野无法与小目标的尺度相匹配。

(3)小目标较小的偏差就会导致IoU上较大的扰动,导致小目标检测先天难于大目标。

现有的小目标检测方法通常通过放大输入图像尺寸或减少降采样率来维持较大分辨率的特征,进而提升小目标检测的性能。引入FPN可以在一定程度上缓解高分辨率引入大量计算的问题,但其在low-level特征上检测的计算复杂度仍很高。

本文提出基础:

(1)高分辨率、低层特征层(Low-level feature map)中的特征计算是高度冗余的,小目标的空间分布稀疏,只在特征图中占一小部分。
(2)FPN结构中,即使低分辨率(high-level)的特征层无法精确的检测出小目标,但也能以较高的置信度来粗略判断出小目标是否存在以及对应的区域。特征金字塔的采样特性类似卷积神经网络的卷积特性(平移、缩放、扭曲不变性),可以依据其下采样、上采样的特点进行特征推断。

题外话: 我发现,在Abstract里加一张图可以非常清晰的提出问题,很不错,写论文的时候可以借鉴一下。

2. 干了啥

本文目标:是在引入更浅层高分辨率的特征助力小目标检测的同时,保证计算的轻量化。

基于前面的发现,QueryDet提出了级联稀疏查询(Cascade Sparse Query)机制。其中Query代表使用前一层(higher-level feature with lower resolution)中传递过来的query来指导本层的小目标检测,再预测出本层的query进一步传递给下一层,对下一层的小目标检测进行指导的过程;Cascade表示了这种级联的思想;Sparse表示通过使用稀疏卷积(sparse convolution)来显著减少低层特征层上检测头的计算开销。

说白了,前一层的特征图具有高层特征和低分辨率,负责对小目标的初筛;这种查询传导到具有高分辨率信息的低层后再进行精找,这种“glance and focus”的two-stage结构可以有效的进行动态推理,检测出最终结果。

通过稀疏查询加速推理:

在以往基于特征金字塔的检测器的设计中,小目标倾向于从高分辨率低级特征图中检测到。 然而,由于小目标通常在空间中分布稀疏,高分辨率特征图上的密集计算范式效率非常低。 受此观察的启发,作者提出了一种从粗到细的方法来降低低级金字塔的计算成本:首先,在粗略特征图上预测小目标的粗略位置,然后集中计算精细特征图上的相应位置。这个过程可以看作是一个查询过程:粗略的位置是查询键,用于检测小目标的高分辨率特征是查询值,整个流程如下图所示。

对于简介中的图而言,里面包含了两个级联的查询操作,即:Large->Medium和Medium->Small,以Large->Medium为例,首先,网络会在Large层次的图像中对小目标进行标记(将规模小于预设阈值s的对象定义为小目标),Large层次的网络在预测过程中会对小目标的置信度进行预测,得到包含小目标的网格信息;其次,在推理过程中,网络选择预测分数大于阈值s的位置作为query,并将这个位置映射到Medium的特征图中,最后,Medium上对应的三个head只会在key位置集中对应的位置上计算head和用于下一层的queries,这个计算过程通过稀疏卷积实现。

3.结论

QueryDet利用high-resolution feature来提升小目标检测性能的同时,通过一种新颖的查询机制级联稀疏查询 (CSQ) 来加速基于特征金字塔的密集对象检测器的推理,利用高层低分辨率特征初筛含有小目标的区域,在高分辨特征层上利用初筛获得的位置,并且使用稀疏卷积运算,极大地节约了计算消耗。

要加在v7上,有待解决,估计也解决不了...

这篇关于【CVPR 2022】QueryDet:加速高分辨率小目标检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/182169

相关文章

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

[数据集][目标检测]血细胞检测数据集VOC+YOLO格式2757张4类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2757 标注数量(xml文件个数):2757 标注数量(txt文件个数):2757 标注类别数:4 标注类别名称:["Platelets","RBC","WBC","sickle cell"] 每个类别标注的框数:

Temu官方宣导务必将所有的点位材料进行检测-RSL资质检测

关于饰品类产品合规问题宣导: 产品法规RSL要求 RSL测试是根据REACH法规及附录17的要求进行测试。REACH法规是欧洲一项重要的法规,其中包含许多对化学物质进行限制的规定和高度关注物质。 为了确保珠宝首饰的安全性,欧盟REACH法规规定,珠宝首饰上架各大电商平台前必须进行RSLReport(欧盟禁限用化学物质检测报告)资质认证,以确保产品不含对人体有害的化学物质。 RSL-铅,