【交互式阈值二进制图像】采用彩色或单色图像通过交互/手动方式阈值单色图像或彩色图像的单个色带研究(Matlab代码实现)

本文主要是介绍【交互式阈值二进制图像】采用彩色或单色图像通过交互/手动方式阈值单色图像或彩色图像的单个色带研究(Matlab代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

【交互式阈值二进制图像】采用彩色或单色图像通过交互/手动方式阈值单色图像或彩色图像的单个色带

本文介绍了一种交互式阈值二进制图像的方法。该方法可以应用于彩色或单色图像,并且允许用户通过滑块的方式以交互/手动的方式设置图像的阈值范围。

阈值图像是一种二进制图像,可以用作其他图像的遮罩图像。在阈值范围内的像素将在中间图像中显示为二进制图像(黑/白),而原始图像的像素将在左侧图像中显示为遮罩(灰度或彩色)。用户可以通过设置最大和最小阈值来调整阈值范围,从而实现对图像的二值化处理。

该方法的输入包括要开始的低阈值和高阈值,以及图像文件名或图像矩阵。可以处理的图像类型包括整数类型(如uint8、uint16等)和浮点类型(如单精度、双精度)。

该方法的输出包括阈值范围和用于选择阈值的最后一个色带。用户可以根据自己的需求选择合适的阈值范围,并通过调整滑块来实现图像的二值化处理。

通过使用交互式阈值二进制图像的方法,用户可以更加灵活地处理彩色或单色图像,并根据需要调整阈值范围,从而得到满足自己需求的二值化图像。该方法具有简单、直观的操作界面,适用于各种图像处理应用场景。

📚2 运行结果

部分代码:

% Read in a standard MATLAB gray scale demo image.
folder = fileparts(which('cameraman.tif')); % Determine where demo folder is (works with all versions).
baseFileName = 'cameraman.tif';
fullFileName = fullfile(folder, baseFileName);
if ~exist(fullFileName, 'file')% File doesn't exist.  Try it without the folder.% It might be able to find it in a folder off the search path.fullFileName = baseFileName;if ~exist(fullFileName, 'file')% Can't find it off the search path either.errorMessage = sprintf('Error: cannot find demo image %s', baseFileName);uiwait(msgbox(errorMessage));return;end
end
grayImage = imread(fullFileName);
% Get the dimensions of the image.  numberOfColorBands should be = 1.
[rows, columns, numberOfColorBands] = size(grayImage);% Display the original gray scale image.
subplot(2, 3, 1);
imshow(grayImage, []);
axis off;
title('Original Grayscale Image', 'FontSize', fontSize);
% Set up figure properties.
set(gcf, 'Name', 'Thresholding Demo by ImageAnalyst', 'NumberTitle', 'off') 
set(gcf, 'Toolbar', 'none', 'Menu', 'none');
set(gcf, 'Position', get(0,'Screensize')); % Enlarge figure to full screen.message = sprintf('Thresholding demo by ImageAnalyst.\n\nDo you want to use an integer image or a floating point image?');
button = questdlg(message, 'Image Type?', 'Integer', 'Floating Point', 'Cancel', 'Integer');
drawnow;	% Refresh screen to get rid of dialog box remnants.
if strcmpi(button, 'Cancel')close(gcf);	% Get rid of window.return;
end
if strcmpi(button, 'Floating Point')% Convert to double in the range -5000 to + 15000% Get input min and max.minGL = double(min(grayImage(:)));maxGL = double(max(grayImage(:)));% Scale the imageimageToThreshold = 20000 * mat2gray(grayImage) - 5000;% Verify themminDblGL = min(imageToThreshold(:));maxDblGL = max(imageToThreshold(:));fprintf('Before scaling, min gray level = %.1f, max gray level = %.1f\nAfter scaling,  min gray level = %.1f, max gray level = %.1f\n', ...minGL, maxGL, minDblGL, maxDblGL);startingLowThreshold = -800;startingHighThreshold = 10400;% Get the histogram[pixelCount, grayLevels] = hist(imageToThreshold(:), 300);subplot(2, 3, 2); bar(grayLevels, pixelCount, 'BarWidth', 1, 'FaceColor', 'b');title('Histogram of Original Double Image', 'FontSize', fontSize);xlim([minDblGL, maxDblGL]); % Scale x axis manually.

% Read in a standard MATLAB gray scale demo image.
folder = fileparts(which('cameraman.tif')); % Determine where demo folder is (works with all versions).
baseFileName = 'cameraman.tif';
fullFileName = fullfile(folder, baseFileName);
if ~exist(fullFileName, 'file')
    % File doesn't exist.  Try it without the folder.
    % It might be able to find it in a folder off the search path.
    fullFileName = baseFileName;
    if ~exist(fullFileName, 'file')
        % Can't find it off the search path either.
        errorMessage = sprintf('Error: cannot find demo image %s', baseFileName);
        uiwait(msgbox(errorMessage));
        return;
    end
end
grayImage = imread(fullFileName);
% Get the dimensions of the image.  numberOfColorBands should be = 1.
[rows, columns, numberOfColorBands] = size(grayImage);

% Display the original gray scale image.
subplot(2, 3, 1);
imshow(grayImage, []);
axis off;
title('Original Grayscale Image', 'FontSize', fontSize);
% Set up figure properties.
set(gcf, 'Name', 'Thresholding Demo by ImageAnalyst', 'NumberTitle', 'off') 
set(gcf, 'Toolbar', 'none', 'Menu', 'none');
set(gcf, 'Position', get(0,'Screensize')); % Enlarge figure to full screen.

message = sprintf('Thresholding demo by ImageAnalyst.\n\nDo you want to use an integer image or a floating point image?');
button = questdlg(message, 'Image Type?', 'Integer', 'Floating Point', 'Cancel', 'Integer');
drawnow;    % Refresh screen to get rid of dialog box remnants.
if strcmpi(button, 'Cancel')
    close(gcf);    % Get rid of window.
    return;
end
if strcmpi(button, 'Floating Point')
    % Convert to double in the range -5000 to + 15000
    % Get input min and max.
    minGL = double(min(grayImage(:)));
    maxGL = double(max(grayImage(:)));
    % Scale the image
    imageToThreshold = 20000 * mat2gray(grayImage) - 5000;
    % Verify them
    minDblGL = min(imageToThreshold(:));
    maxDblGL = max(imageToThreshold(:));
    fprintf('Before scaling, min gray level = %.1f, max gray level = %.1f\nAfter scaling,  min gray level = %.1f, max gray level = %.1f\n', ...
        minGL, maxGL, minDblGL, maxDblGL);
    startingLowThreshold = -800;
    startingHighThreshold = 10400;
    % Get the histogram
    [pixelCount, grayLevels] = hist(imageToThreshold(:), 300);
    subplot(2, 3, 2); 
    bar(grayLevels, pixelCount, 'BarWidth', 1, 'FaceColor', 'b');
    title('Histogram of Original Double Image', 'FontSize', fontSize);
    xlim([minDblGL, maxDblGL]); % Scale x axis manually.

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]龙建武,申铉京,陈海鹏.基于图像区域的交互式文本图像阈值分割算法[J].计算机研究与发展, 2012, 49(7):12.DOI:CNKI:SUN:JFYZ.0.2012-07-005.

[2]龙建武申铉京陈海鹏.基于图像区域的交互式文本图像阈值分割算法[J].计算机研究与发展, 2012, 49(7):1420-1431.

[3]兰红.多阈值优化的交互式医学图像分割方法[J].计算机科学, 2013, 40(9):4.DOI:10.3969/j.issn.1002-137X.2013.09.066.

🌈4 Matlab代码实现

这篇关于【交互式阈值二进制图像】采用彩色或单色图像通过交互/手动方式阈值单色图像或彩色图像的单个色带研究(Matlab代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/180778

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函