python+OpenCv笔记(十六):边缘检测原理(Sobel算子原理、Laplacian算子原理、Canny边缘检测原理)

本文主要是介绍python+OpenCv笔记(十六):边缘检测原理(Sobel算子原理、Laplacian算子原理、Canny边缘检测原理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、边缘检测原理

二、Sobel检测算子原理

三、Laplacian算子原理

四、Canny边缘检测

1.噪声去除(高斯滤波)

2.计算图像的梯度与梯度方向

3.非极大值抑制NMS

4.双阈值筛选边界     

五、边缘检测示例及代码编写(跳转)


一、边缘检测原理

目的:

        边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。

表现形式:

        图像属性中的显著变化通常反映了属性的重要事件和变化。边缘的表现形式如下图所示:

        图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。

分类:

        有许多方法用于边缘检测,他们的绝大部分可以划分为两类:基于搜索和基于零穿越。

        基于搜索∶通过寻找图像一阶导数中的最大值来检测边界,然后利用计算结果估计边缘的局部方向,通常采用梯度的方向,并利用此方向找到局部梯度模的最大值,代表算法是Sobel算子和Scharr算子。

(如若求图一中的边缘,这对图一曲线进行求导,得到图二的求导后曲线,图二中导数最大值的地方即为边界。)

         基于零穿越:通过寻找图像二阶导数零穿越来寻找边界,代表算法是Laplacian算子。

二、Sobel检测算子原理

本质:

Sobel算子是图像检测的重要算子之一,其本质是梯度运算。

那什么情况下会产生梯度呢?

例如,对于一张二维图像,

 当我们将卷积核放在图像中时,有三种位置关系,如图:

当卷积核放在纯黑或者纯白的图像上时,是没有梯度产生的,只有放在黑白交界处才会产生梯度,比如白色的灰度值为255,黑色的灰度值为0,那么从白色到黑色的梯度即为0-255=-255,当梯度值的大小超过一个阈值后,我们就认为此处为边缘,sobel算子的算法与其类似。(此处为理解,sobel算子算法相对更加复杂)。

原理:

对于不连续的函数,一阶导数可以写做

{f}'(x)=f(x)-f(x-1)

        或

{f}'(x)=f(x+1)-f(x)

        所以有

{f}'(x)=\frac{f(x+1)-f(x-1)}{2}

假设要处理的图像为 I ,在两个方向求导:

  1. 水平方向:将图像 I 与奇数大小的模板进行卷积,结果为\large _G{}_x,比如,模板大小为3时,有

    \large _G{}_x=\begin{bmatrix} -1 & 0 &+1 \\ -2& 0 &+2 \\ -1& 0 &+1 \end{bmatrix}*I
     
  2.   垂直方向:将图像 I 与奇数大小的模板进行卷积,结果为\large _G{}_y,比如,模板大小为3时,有

    \large _G{}_y=\begin{bmatrix} -1 & -2 &-1 \\ 0& 0 &0 \\ +1& +2 &+1 \end{bmatrix}*I

 那么在图像的每一点处,结合以上两个结果可以求出:

\large G=\sqrt{​{G{_x^{2}}}^{}+{G{_y^{2}}}^{}}

可以简化为:

\large \left | G \right |=\left | G{_x} \right |+\left | G{_y} \right |

统计极大值的位置,就是图像的边缘。

具体步骤:

1.

        例如,原图像为5*6的矩阵

         我们拿固定的3*3的sobel算子卷积核与原图像矩阵进行运算(5*5同理,但必须为奇数)

 2.

        将卷积核在原始图像上进行遍历
        第一次为:

         第二次为:

         最后一次为:

         遍历完毕之后,我们看卷积核的核心,它在原图像矩阵上的覆盖范围为:

        

         可以看出,在原图像中,橙色区域都可以经过与卷积核运算而得到相应的梯度值,而周围的白色区域则不能计算出梯度值,在OpenCv中目前不知道是如何处理的,但在深度学习中是这样处理的:我们将原图像的周围再扩展一圈,并填充值为0,如图:

         这时,我们再与卷积核运算,就可以将原图像的全部区域都计算出梯度值,如图:

 3.

        那么在每一次的遍历之中,sobel算子算法是如何求得梯度值的呢?
        首先,对于水平方向的梯度,根据上面的计算公式有:

         P5点x方向的梯度值为:

P5{_x}=(P3-P1)+2(P6-P4)+(P9-P7)

        在这儿,我们可以理解一下为什么卷积核会有1和2这两个值,1和2代表的是权值,因为对于中心点P5来说,离得越近,对其影响越大,反之越小,所以P4、P6赋予权值为2,其余点赋权值为1。

        那么,我们根据梯度计算式可以看出, P5{_x}是由右边一列减去左边一列(相应列乘以相应的权值)得出的,当左右两列差别特别大的时候,目标点的值会很大,说明该点为边界点。

同理有:

 P5{_y}=(P7-P1)+2(P8-P2)+(P9-P3)

4.

        如果目标像素点求得的值小于0或者大于255怎么办呢?

        因为原图像的灰度值是8位无符号数,即0-255。OpenCv默认的是截断操作,即小于0按0算,大于255按255算,这样显然是不合理的,比如-240是不能简单看做0来算的。

        在python-OpenCv中,我们可以使用16位有符号的数据类型(cv2.CV_16S),处理完图像后,再使用cv2.convertScaleAbs()函数将其转回原来的uint8格式。

        最终的处理结果是,对于小于0的数,取绝对值,对于大于255的数,取255。

 5.

        总梯度:

\bg_white \fn_cm \large G=\sqrt{​{G{_x^{2}}}^{}+{G{_y^{2}}}^{}}

        简化梯度:

\bg_white \fn_cm \large \left | G \right |=\left | G{_x} \right |+\left | G{_y} \right |

参考:
https://www.bilibili.com/video/BV11341127pe?from=search&seid=11602454197720109774&spm_id_from=333.337.0.0https://www.bilibili.com/video/BV11341127pe?from=search&seid=11602454197720109774&spm_id_from=333.337.0.0

三、Laplacian算子原理

原理:

        Laplacian是利用二阶导数来检测边缘,因为图像是二维的,我们需要在两个方向上求导,如下式所示:

\large \Delta src=\frac{ \partial ^{2}src} {\partial x^{2}}+\frac{ \partial ^{2}src} {\partial y^{2}}

在图像中,将该方程表示为离散的形式,

        一维情况:

        \large \bg_white \fn_phv \frac{ \partial ^{2}f} {\partial x^{2}} ={f}''(x)={f}'(x+1)-{f}'(x)

\large = f(x+1)-f(x)-(f(x)-f(x-1))

\large =f(x+1)+f(x-1)-2f(x)

\bg_white \fn_phv \frac{ \partial ^{2}f} {\partial y^{2}} =f(y+1)+f(y-1)-2f(y)

        二维情况:

\small \bigtriangledown ^{2}f(x,y)=[f(x+1,y)+f(x-1,y)+f(x,y+1),+f(x,y-1)]-4f(x,y)

        所以由方程可以得出,laplacian算子使用的卷积核为:

\large kernel=\begin{bmatrix} 0 &1 &0 \\ 1& -4& 1\\ 0& 1 & 0 \end{bmatrix}

具体步骤:

(具体步骤与Sobel算子基本相似,可参考上文的Sobel算子原理步骤)

        这里给出卷积核与图像的运算过程:

        例如,分别有卷积核与原图像矩阵:

        则P5点的梯度值为:

\large P5{_n}_e_w=(P2+P4+P6+P8)-4*P5

四、Canny边缘检测

Canny边缘检测主要由四步组成:

  1. 噪声去除(高斯滤波)
  2. 计算图像的梯度与梯度方向
  3. 非极大值抑制
  4. 双阈值筛选边界
     

1.噪声去除(高斯滤波)

        由于边缘检测容易受到噪声的影响,所以首先使用5*5高斯滤波器去除噪声。
        高斯滤波原理详见文章:
python+OpenCv笔记(十):高斯滤波https://blog.csdn.net/qq_45832961/article/details/122351534

2.计算图像的梯度与梯度方向

        对高斯滤波平滑后的图像使用Sobel算子计算水平和竖直方向的一阶导数(\bg_white \large G{_x}\small \bg_white \large G{_y}),根据得到的\bg_white \large G{_x}\small \bg_white \large G{_y}找到边界的梯度和方向,公式如下:

\bg_white \fn_cm \large G=\sqrt{​{G{_x^{2}}}^{}+{G{_y^{2}}}^{}}

\bg_white \fn_cm \LARGE \theta =arctan(\frac{G{y}}{G{x}})

        Sobel算子原理详见本文的第二篇:Sobel检测算子原理

        如果某个像素点是边缘,则其梯度方向总与边缘垂直,。

        梯度方向被分为四类:垂直、水平和两个对角线方向。

3.非极大值抑制NMS

        在获得梯度的大小和方向之后,对整幅图像进行扫描,去除那些非边界上的点。
        即对每一个像素进行检查,看这个点的梯度在周围具有相同梯度方向的点中是不是最大的
        如图:

         A点位于图像的边缘,在其梯度变化方向,选择像素点B和C,用来检验A点的梯度是否为极大值,若为极大值,则进行保留,否则A点被抑制,最终的结果是具有“细边”的二进制图像。

        (即我们第二步求得的边界可能是ABC,边缘较粗,这时如果A的梯度值均大于B、C,我们进行非极大值抑制后就只剩下了A,从而达到了边缘细化的效果。)

        当然,梯度方向被分为四类:垂直、水平和两个对角线方向,我们将其梯度方向近似为以下值中的一个(0,45,90,135,180,225,270,315),例如30度近似为45度。

         例如,当一个像素点的梯度方向为45度时,我们就在45度与225度(正反方向)两个方向上进行比较,从而决定保留还是抑制。

4.双阈值筛选边界     

        现在要确定真正的边界。我们设置两个阈值: 阈值下界(minVal)和 阈值上界(maxVal)。当图像的灰度梯度高于maxVal时被认为是真的边界(强边界),低于minVal的边界必然不是边界,会被抛弃。如果介于两者之间的话,我们称其为弱边界,和强边界相连的弱边界认为是边界,其他的弱边界则被抑制。如下图:

五、边缘检测示例及代码编写(跳转)

  1. Sobel算子
    python+OpenCv笔记(十三):边缘检测——Sobel检测算子https://blog.csdn.net/qq_45832961/article/details/122396761
  2. Laplacian算子
    python+OpenCv笔记(十四):边缘检测——laplacian算子https://blog.csdn.net/qq_45832961/article/details/122429117
  3. Canny边缘检测
    python+OpenCv笔记(十五):边缘检测——Canny边缘检测https://blog.csdn.net/qq_45832961/article/details/122441575

这篇关于python+OpenCv笔记(十六):边缘检测原理(Sobel算子原理、Laplacian算子原理、Canny边缘检测原理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/180250

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识