数学分析:含参变量的积分

2023-10-10 09:15

本文主要是介绍数学分析:含参变量的积分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

同样很多收敛性的证明不是重点,但里面的知识还是需要适当掌握,知道中间的大致思考和解决路径即可。

 本质还是极限的可交换性,求导可以换到积分里面去操作。

这里要注意变量的区别,首先积分的被积变量是x,但是函数的变量是y,y是参数,所以叫做带参数的积分。

这是一个很有意思的题,首先我们不好求积分的时候,可以先对里面的参变量进行求导。得到一个简单的式子,然后再积分即可。

 这是积分的可交换性。

要反常积分收敛,就是说要在无界的部分,积分足够小。

 我们要证明在足够大的情况下,这个积分是很小的。

 

 各种可交换。一般我们认为大部分能列出来的都是可交换的。

反常积分的技巧真是千奇百怪。

 

还是各种可交换。

 

 

 

终于开始讲卷积了。物理中的卷积,是针对输入信号f,通过一个仪器的算子A,变成输出信号。如果A是一个平移变算子,也就是时间推移后,依然产生完全一样的信号,只是t不同。

 要根据输入信号来求输出信号。要根据输出信号反推输入信号。一般来说,只要知道仪器对脉冲的响应,就可以知道所有它对其他信号的响应。

 

 重点来了,我们一个普通的信号f,可以看成分段函数,而当分段趋于无穷的时候,分段函数就趋于f,而这个分段函数,可以用脉冲函数求和来表示。这个真是太秒了。原来是这么理解的。

 因为算子是线性的,所以可以把A挪进去。最后我们得到了一个卷积的公式。所以我们第一个问题得到了解决,为什么知道脉冲函数的响应,就能知道所有其他函数的响应。通过卷积即可。而这个卷积很有意思,首先它引入了两个未知变量,其中一个是被积变量,而另一个是参变量。一般,我们可以认为,对于原始函数f(t),我们通过引入了一个脉冲函数,实际也引入了一个额外的时间平移变量。这个引入的时间平移变量,是最终会被积分的。而t本来就是原始函数的变量。

这样,我们就定义了一个更加一般的卷积。

 

 

这些都是卷积的重要性质。

 这也是一个很重要的例子,我们一个函数和一个脉冲函数卷积,会取到一个平均的作用。

显然,如果alpha趋向于0,那么自然这个积分就是f(y)了。因为积分就是面积,面积除以底,那自然就是高了。

 

 这个的意思是说,一些函数可能不是无限次可微的,那么我们把它和某个 特定的函数卷积后,就可以得到一个无限次可微的函数,而且他是逼近原始函数的。

这个也很吊,可以用多项式逼近所有区间上的连续函数。

 这里要注意,我们用了卷积,自然就会引入一个新的被积变量,它应该是看成一个常数。

所有周期函数都可以用cos sin来逼近。

后面含参变量的重积分也是各种可交换,就不提了。 

这篇关于数学分析:含参变量的积分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/179503

相关文章

微积分-积分应用5.4(功)

术语“功”在日常语言中用来表示完成一项任务所需的总努力量。在物理学中,它有一个依赖于“力”概念的技术含义。直观上,你可以将力理解为对物体的推或拉——例如,一个书本在桌面上的水平推动,或者地球对球的向下拉力。一般来说,如果一个物体沿着一条直线运动,位置函数为 s ( t ) s(t) s(t),那么物体上的力 F F F(与运动方向相同)由牛顿第二运动定律给出,等于物体的质量 m m m 与其

变速积分PID控制算法

变速积分PID控制算法 变速积分PID控制算法:变速积分PID的基本思想:变速积分的PID积分项表达式: 注:本文内容摘自《先进PID控制MATLAB仿真(第4版)》刘金琨 编著,研读此书受益匪浅,感谢作者! 变速积分PID控制算法: 在普通的PID控制算法中,由于积分系数 k i k_i ki​是常数,所以在整个控制过程中,积分增量不变。而系统对积分项的要求是,系统偏差大

梯形积分PID控制算法

梯形积分PID控制算法 梯形积分PID控制算法: 注:本文内容摘自《先进PID控制MATLAB仿真(第4版)》刘金琨 编著,研读此书受益匪浅,感谢作者! 梯形积分PID控制算法: 在PID控制律中积分项的作用是消除余差,为了减小余差,应提高积分项的运算精度,为此,可将矩形积分改为梯形积分。梯形积分的计算公式: ∫ 0 t e ( t ) d t = ∑ i = 0 k e

抗积分饱和PID控制算法

抗积分饱和PID控制算法 抗积分饱和PID控制算法:1.积分饱和现象:2.抗积分饱和算法: 注:本文内容摘自《先进PID控制MATLAB仿真(第4版)》刘金琨 编著,研读此书受益匪浅,感谢作者! 抗积分饱和PID控制算法: 1.积分饱和现象: 所谓积分饱和现象是指若系统存在一个方向偏差,PID控制器的输出由于积分作用的不断累加而加大,从而导致执行机构到达极限位置 X m

积分分离PID控制算法

积分分离PID控制算法 积分分离PID控制:积分分离控制基本思路:积分分离控制算法表示:积分分离式PID控制算法程序流程图: 注:本文内容摘自《先进PID控制MATLAB仿真(第4版)》刘金琨 编著,研读此书受益匪浅,感谢作者! 积分分离PID控制: 在普通的PID控制中引入积分环节的目的,主要为了消除静差,提高控制精度。但在过程启动、结束或大幅度增减设定时,短时间内系统输出

c++求积分算法

//c++ 作业:用两重菜单显示 积分函数和积分方法#include<iostream>#include<cmath>using namespace std;class Function{public:virtual double operator()(double x) const=0; };class Function1:public Function{publi

DL/T645-2007_Part2(参变量数据标识编码表)

数据类型分为7类:电能量、最大需量及发生时间、变量、事件记录、参变量、冻结量、负荷记录。 数据标识数据格式 数据 长度  (字节)单位功能数据项名称DI₃DI₂DI₁DI₀读写04 00 01 01020304050607YYMMDDWWhhmm55NNNNXXXXYYNM00hhmmYYNMDDhhmm  4  3  1  2  5  5年月日星期时分秒分分毫秒年月日时分年月日时分日期及星期(其

离散的点进行积分

1,可以直接用梯形公式 % 定义x和y坐标向量x = [0, 1, 2, 3, 4, 5]; % x的值y = [0, sin(1), sin(2), sin(3), sin(4), sin(5)]; % y的值,这里假设y是sin函数在x处的值% 使用trapz函数计算数值积分integral_value = trapz(x, y);% 显示结果disp(['The numerical

积分直方图(Integralnbsp;Histog…

原文地址:积分直方图(Integral Histogram) 作者:小罗   积分直方图是有Fatih Porikli在CVPR-2005《Integral Histogram: A Fast Way to Extract Histograms in Cartesian Spaces》的论文中提到的。   在介绍积分直方图之前,先介绍下积分图像,积分图像是P.Viola and