NeurIPS 2023 | 李飞飞团队提出SiamMAE:孪生掩码自编码器,刷榜视觉自监督方法

本文主要是介绍NeurIPS 2023 | 李飞飞团队提出SiamMAE:孪生掩码自编码器,刷榜视觉自监督方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在计算机视觉领域,想要建立图像和场景(scene)之间之间的对应关系是一项比较困难的任务,尤其是在存在遮挡、视角改变或是物体外观发生变化的情况下。

最近,斯坦福大学李飞飞团队对MAE进行扩展,提出了孪生掩码自编码器SiamMAE(Siamese Masked Autoencoders)以学习视频中的视觉对应关系。、图片

论文链接(收录NeurIPS 2023 Oral):

https://siam-mae-video.github.io/resources/paper.pdf

主页:https://siam-mae-video.github.io/

先随机采样两个视频帧,并进行非对称掩码操作;然后SiamMAE编码器网络对两个帧进行独立处理,最后使用交叉注意层组成的解码器来预测未来帧(future frame)中丢失的图像块。

通过对未来帧中的大部分(95%)图像块进行掩码,同时保持过去帧(past frame)图像不变,SiamMAE促使网络专注于物体运动,并学习以物体为中心的表征。
在这里插入图片描述

尽管整个网络的设计概念比较简单,但通过SiamMAE学习到的特征在视频物体分割、姿势关键点传播和语义部分传播任务上都优于最先进的自监督方法。

SiamMAE在不依赖于数据增强、基于手工跟踪的前置任务或其他技术来防止表征崩溃的情况下,实现了非常有竞争力的性能。

孪生掩码自编码器
研究人员的目标是开发一种自监督的方法来学习对应关系,主要是将掩码自编码器(MAE)模型扩展到视频数据中。

在这里插入图片描述
Patchify
给定具有L帧的视频剪辑,首先随机采样两个视频帧,两帧之间的距离通过从预定的potential frame gaps范围中选择一个随机值来确定。

与原始ViT模型类似,通过将每个帧转换为一系列不重叠的N×N个patch来拼接视频帧。

最后,把位置嵌入加到线性投影上,并附加一个[CLS]标记,需要注意的是没有使用时序位置嵌入。

Masking
像图像和视频这样的自然信号是高度冗余的,分别表现为空间和时空上的冗余。为了创造一个具有挑战性的预测性自监督学习任务,MAEs随机掩码了75%的图像patch,视频数据的掩码率提升到90%,并且对每帧都使用相同的掩码率。

这种设计可以使网络无法利用和学习到时间上的对应关系,避免在对应关系学习基准上达到次优性能。

研究人员认为,不对称的掩码可以创造一个更有挑战性的自监督学习任务,并且可以鼓励网络学习时间上的相关性。

所以对于采样的两个视频帧,对第一帧选择不掩码,对第二帧选择掩码95%,这样就可以将整个过去帧(entire past frame)作为输入,网络只需要将其扩散到未来中的适当位置即可,可以促进网络对物体运动进行建模并关注物体的边界。

图片

为了进一步增加任务的难度,两个视频帧之间具有更大的时间间隔,尽管可能会导致对未来的预测变得模糊,并可能产生多种合理的结果,但为第二帧提供少量的patch作为输入,可以让网络的自监督学习变得更困难。

编码器
研究人员探索了两种不同的编码器配置来处理输入帧。

联合编码器(joint encoder) 是图像MAEs在一对视频帧上的扩展,把两帧未掩码的图像patch串联起来,然后输入到标准的ViT编码器中进行处理。

孪生编码器(siamese encoder) 是用于比较实体的权重共享神经网络,是对比表征学习方法的一个重要组件,用于对应学习(corresponding learning)时通常需要一些信息瓶颈来防止网络学习的解决方案,如使用颜色通道dropout来迫使网络避免依赖颜色来匹配对应关系。

在这篇论文中,研究人员使用孪生编码器来独立处理两幅图像,使用非对称掩码作为信息瓶颈。

解码器

编码器的输出通过线性层进行投影,并加入带有位置嵌入的[MASK] token,以生成对应于输入帧的所有token

研究人员探索了三种不同的解码器配置:
联合解码器(joint decoder) 在两帧的token串联上使用原版Transformer模块,其主要缺点是对GPU内存的需求大幅增加,特别是在使用较小的patch尺寸时。

交叉自解码器(cross-self decoder) 与原版Transformer模型的编码-解码器设计类似,每个解码器块由一个交叉注意力层和一个自注意力层组成,来自第二帧的token通过交叉注意力层与第一帧的token进行注意力操作,然后通过自注意力层进行相互融合。

可以注意到,交叉注意力层在功能上类似于自监督对应学习方法中经常使用的affinity矩阵。

交叉解码器(cross decoder) 由交叉注意力层的解码器块组成,其中来自第二帧的token与来自第一帧的token进行注意力操作。

最后,解码器的输出序列被用来预测掩码图像块中的归一化像素值,在解码器的预测和真实值之间使用L2损失。

实验结果
图片

视频物体分割
在多物体分割基准数据集DAVIS 2017上,使用480p分辨率的图像对模型进行评估。
实验结果可以发现SiamMAE明显优于VideoMAE(从39.3%提升到62.0%),研究人员将其归因于VideoMAE中使用了tube掩码方案,使得模型无法学习时间上的对应关系。

图片
与DINO类似,研究人员也发现降低patch的尺寸会带来明显的性能提升。

并且文中使用的ViT-S/8(+9.4%)模型优于之前所有的对比学习和自监督的对应学习方法。

图片

还可以注意到尽管较大的MAE-ST模型(ViT-L/16,304M参数)在随机掩码的情况下比VideoMAE表现更好,但其性能仍然落后于SiamMAE相当多。

而且在视频上训练的MAE与图像MAE的表现相似,视频与图像的不同之处在于,图像是(近似)各向同性的,时间维度是特殊的,并不是所有的时空方向都是同等可能的。

因此,对称地处理空间和时间信息可能是次优的。

视频部分分割(Video Part Segmentation)
在视频实例解析(Video Instance Parsing, VIP)基准上对SiamMAE进行评估,该基准包括为20个不同的人体部位传播语义掩码。

与评估的其他数据集相比,VIP特别具有挑战性,因为包括更长的视频(最长120秒)。

与先前工作类似,使用560×560的图像和单一背景帧进行评估后,可以发现ViT-S/8模型性能大大超越了DINO (从39.5提升到45.9)。

图片

SiamMAE从更小的patch尺寸中,比DINO受益更多,实现了+8.6的mIoU评分,比DINO的+3.3 mIoU有所提高。

SiamMAE也优于之前所有的对比学习和自监督的对应关系学习方法。

姿势追踪(pose tracking)
在关键点传播的任务上对SiamMAE进行了评估,需要传播15个关键点,并且要求空间上的精确对应关系,使用320×320的图像和一个单一的背景帧,SiamMAE的性能优于所有其他模型,并且比DINO更受益于较小的patch尺寸(+14.9到+10.9 PCK@0.1)

图片

这篇关于NeurIPS 2023 | 李飞飞团队提出SiamMAE:孪生掩码自编码器,刷榜视觉自监督方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/177097

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE