深度优先(DFS) (例子:全排列,迷宫,pta龙龙送外卖)

2023-10-10 00:36

本文主要是介绍深度优先(DFS) (例子:全排列,迷宫,pta龙龙送外卖),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       深度搜索是一种计算机算法,用于在图或树等数据结构中查找目标节点。深度搜索从一个节点出发,依次遍历其所有子节点,直到找到目标节点或遍历完所有节点。如果找到目标节点,则搜索结束;如果遍历完所有节点仍未找到目标节点,则搜索失败。深度搜索通常使用递归实现,通过堆栈管理遍历的节点。深度搜索常用于解决迷宫、棋盘等问题,也是其他算法的核心组成部分,如搜索算法、动态规划等。 

模型:

void dfs(int step)

{

        判断边界

        for(int i=1;i<=n;i++)//尝试每种可能

             {

                  dfs(step+1);//继续下一步

              }
         reutn;//返回

        深度优先搜索(DFS)全排列的基本思路是对于一个长度为n的数组,从第1个位置开始(即起始状态),对于每个未选择的数字,在当前的位置上进行一次选择,然后向下递归直到找到一个完整的排列,然后回溯到当前状态,再选择下一个未选择的数字进行搜索。 

#include<iostream>//深度优先搜索,全排列为例子
using namespace std;
int book[100];//标记
int n;
int a[100];
void dfs(int step)
{int i;if (step == n + 1)//判断边界{for (int i = 1; i <= n; i++)cout << a[i]<<" ";cout << endl;return;}for (int i = 1; i <= n; i++)//每种可能{if (book[i] == 0){a[step] = i;book[i] = 1;dfs(step + 1);//继续下一步book[i] = 0;}}return;
}
int main()
{cin >> n;dfs(1);
}

       深度搜索算法可以用于解决迷宫问题。将迷宫抽象成一个矩阵,每个格子表示一个节点。将起点节点入栈,然后遍历其所有相邻节点。如果相邻节点是通路,则将其入栈,并在矩阵中标记为已访问。如果相邻节点是终点,则搜索结束;如果所有相邻节点都是墙,或者已经访问过,则回溯到上一步节点。重复以上步骤,直到遍历完所有节点或者找到终点。

#include<iostream>//深度优先搜索,迷宫最短路径问题
using namespace std;
int book[51][51];//标记是否走过
int n,m,q,p,x,y;
int a[51][51];
int min1 = 9999;
int next1[4][2] = { {0,1},{1,0},{0,-1},{-1,0} };//右,下,左,上四个方向
void dfs(int x,int y,int step)
{int tx, ty;if (x == q && y == p)//走到终点{if (step < min1)min1 = step;return;}for (int k = 0; k < 4; k++)//向四个方向都走{tx = x + next1[k][0];ty = y + next1[k][1];if (tx<1 || tx>n || ty<1 || ty>m)continue;if (a[tx][ty] == 0 && book[tx][ty] == 0)//该条路不为障碍且没走过{book[tx][ty] = 1;//标记已走过dfs(tx, ty, step + 1);book[tx][ty] = 0;//尝试结束,取消标记}}return;
}
int main()
{cin >> n >> m;//迷宫规模for (int i = 1; i <= n; i++)//0为可走通路for (int j = 1; j <= m; j++)cin >> a[i][j];//输入迷宫cout << "输入起点,终点:" << endl;cin >> x >> y >> q >> p;//输入起点,终点book[x][y] = 1;//起点默认走过dfs(x,y,0);cout <<"最短路径为:"<< min1;
}

 

       龙龙是“饱了呀”外卖软件的注册骑手,负责送帕特小区的外卖。帕特小区的构造非常特别,都是双向道路且没有构成环 —— 你可以简单地认为小区的路构成了一棵树,根结点是外卖站,树上的结点就是要送餐的地址。

每到中午 12 点,帕特小区就进入了点餐高峰。一开始,只有一两个地方点外卖,龙龙简单就送好了;但随着大数据的分析,龙龙被派了更多的单子,也就送得越来越累……

看着一大堆订单,龙龙想知道,从外卖站出发,访问所有点了外卖的地方至少一次(这样才能把外卖送到)所需的最短路程的距离到底是多少?每次新增一个点外卖的地址,他就想估算一遍整体工作量,这样他就可以搞明白新增一个地址给他带来了多少负担。

输入格式:

输入第一行是两个数 N 和 M (2≤N≤105, 1≤M≤105),分别对应树上节点的个数(包括外卖站),以及新增的送餐地址的个数。

接下来首先是一行 N 个数,第 i 个数表示第 i 个点的双亲节点的编号。节点编号从 1 到 N,外卖站的双亲编号定义为 −1。

接下来有 M 行,每行给出一个新增的送餐地点的编号 Xi​。保证送餐地点中不会有外卖站,但地点有可能会重复。

为了方便计算,我们可以假设龙龙一开始一个地址的外卖都不用送,两个相邻的地点之间的路径长度统一设为 1,且从外卖站出发可以访问到所有地点。

注意:所有送餐地址可以按任意顺序访问,且完成送餐后无需返回外卖站

输出格式:

对于每个新增的地点,在一行内输出题目需要求的最短路程的距离。

输入样例:

7 4
-1 1 1 1 2 2 3
5
6
2
4

输出样例:

2
4
4
6

注意:把该题看出树结构,深度搜索

1、该题最主要是从下往上,搜索父亲节点,用dis[]储存该点到树根的距离,a[]储存该点的父亲节点。

2、该题dfs判断边界是:搜索到树根或者搜索到父亲节点已经经过两种情况,返回的是到树根或者到父亲节点的来回距离。

3、剩下返回新增一个点需要增加的距离。

4、因为不用返回树根,所以挑最长的距离最后走,不用返回。所以最后结果为sum-maxl。

 

#include<iostream>
using namespace std;
int n, m,sum=0;
int a[11000];//储存树
int dis[11000] = { 0 };
int maxl;//最长路径
int dfs(int x, int step)
{if (a[x] == -1 || dis[x]){maxl = max(maxl, dis[x] + step);//取最大深度return step * 2;}int res = dfs(a[x], step + 1);//搜索父亲节点,深度加一dis[x] = dis[a[x]] + 1;//该点到树根距离为父亲节点到树根距离加一return res;
}
int main()
{cin >> n >> m;for (int i = 1; i <= n; i++)cin >> a[i];while (m--){int x;cin >> x;sum+=dfs(x, 0);cout << sum - maxl << endl;}
}

这篇关于深度优先(DFS) (例子:全排列,迷宫,pta龙龙送外卖)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/176686

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr