本文主要是介绍bidirectional lstm keras_基于LSTM的多变量多步序列预测模型实战「超详细实现说明讲解」...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
个人博客地址:
https://yishuihancheng.blog.csdn.net 【CSDN博客专家】
大家好,欢迎大家关注我的CSDN博客【Together_CZ】,我是沂水寒城,很高兴作为一名技术人员能够持续地学习、收获和分享进步的心路历程与技术积累。
本文主要是基于LSTM(Long Short-Term Memory)长短期记忆神经网络来实践多变量序列预测,并完成对未来指定步长时刻数据的预测、分析和可视化,,手把手教你去搭建属于自己的预测分析模型。
本文主要分为:LSTM模型简介、数据探索分析、模型构建测试三个部分。
一、LSTM模型简介
既然说到了LSTM,就要简单的介绍一下RNN(Recurrent Neural Network,RNN)循环神经网络了,LSTM神经网络模型可以看做是RNN的一种,RNN是一类专门用于处理时序数据样本的神经网络,它的每一层不仅输出给下一层,同时还输出一个隐状态,给当前层在处理下一个样本时使用。
RNN可以根据之前出现的信息对当前的信息进行推断,特别是在语言处理中,RNN可用于根据上文预测下一个将要出现的词。但是它只能处理一定间隔的信息,如果上文间隔过远,就有可能出现难以联想的情况。这时候LSTM就应运而生了。LSTM的展开结构中与RNN的不同主要是存在控制存储状态的结构,如下图是经典的RNN模型和LSTM模型的展开结构示意图:
想要深入理解LSTM的机理模式,弄清楚LSTM中的三种门是非常重要的,LSTM模型中主要包含了:忘记门、输入层门和输出层门。各个门的简单介绍说明如下表所示:
这里关于LSTM模型详细的原理介绍说明就到这里,想要深入搞明白其中的运行机制还是需要花一定的时间去消化理解才可以的。
本文今天主要是借助于LSTM这一深度学习模型来对手中的时序序列数据进行建模分析,构建我们的序列数据预测模型,来对未来多步时刻进行预测分析。
二、数据探索分析
这里我们使用到的数据集来源于中央监测站某地公开的大气常规六因子的监测数据,数据集部分截图如下所示:
其中,TIME,PM25,PM10,SO2,NO2,CO,O3和AQI分别表示:监测时间、pm2.5、pm10、so2、no2、co、o3和空气质量指数。
为了对现有的数据集做一个简单的数据探索分析,一些必要的统计计算和可视化分析是比不可少的,这里我推荐一款数据概览分析工具pandas_profile,顾名思义,就是基于pandas开发的一款数据概览分析工具,使用非常地方便,下面我们基于该模块进行数据探索,具体的代码量很少,如下所示:
1. #encoding:utf-8 2. 3. '''4. __Author__:沂水寒城 5. 功能: Panda数据探索分析 6. ''' 7. 8. 9. import pandas as pd 10. import pandas_profiling 11. 12. 13. df = pd.read_csv('dataset.csv') 14. profile=pandas_profiling.ProfileReport(df) 15. profile.to_file('dataset.html')
运行结束后,本地的dataset.html中已经存储了我们所需要的相关分析结果了,内容截图如下,首先是数据集的整体概览性的介绍以及各个因子的统计计算与分布计算结果展示:
这篇关于bidirectional lstm keras_基于LSTM的多变量多步序列预测模型实战「超详细实现说明讲解」...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!