可和波士顿动力Handle机器人 PK的滑冰选手?自由驾驭冰刀适应力强!

本文主要是介绍可和波士顿动力Handle机器人 PK的滑冰选手?自由驾驭冰刀适应力强!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来源 | 机器人大讲堂

原创 | 第五先森

 

导读

近些年,随着科技的不断发展,我们见识到很多有趣的机器人类型,拥有公民身份的机器人索菲亚、可奔跑可跳跃可旋转的机器人Atlas,能够与人共舞的机器人莱卡狗、意大利的半人马机器人……今天,要给大家介绍一给个可以自学滑冰的机器人——Skaterbots。


该款机器人是瑞士苏黎世联邦理工学院(ETH Zurich)计算机器人实验室设计制造的,Skaterbots采用腿轮混合式结构,具有腿式和轮式系统的多功能性,将机动轮放在机器人腿上,除了提供支撑,在需要的时候还可以选择切换到腿部运动。通过组合腿和轮子提供的额外灵活性,腿轮式精确协调的自由度,能够做出平衡、优雅、高效、复杂的动作,不信看看下面的动图。在滑冰之前为了更好的发挥,Skaterbot将步行者移动的轮子换成了冰鞋。

                                           魔鬼的步伐

急停、原地转向、移动和滑动的完美组合,简直行云流水,看着它,有没有想起我们小时候溜冰的样子,累了,就急停休息一下;无聊了,就原地转转打发一下时间,开心了,滑到忘我,动作流畅优美。

除了腿轮式结构,Skaterbots还有一大特点:3D打印的模块化部件,这样的设计有点类似于乐高,具有以下优点:

一、该款机器人具有良好的组装性、易于拼接、制作简单、便于维护,就算是初学者也可以快速轻松地用这个模块化的部件组装好一台机器人。

二、扩展性很强,混合搭配不同类型的伺服电机,3D打印连接器,车轮和支脚,就创造出了独特的机器人。利用模块化的部件和你的想象力、创造力,便可以搭载出一款你的专属机器人!

三、采用3D打印技术,很好的减轻了机器人本身的自重,减少了对伺服电机的压力,有利于结构的稳定性,并且很好的控制了整台机器人的成本,一举两得。

Skaterbots之所以可以在冰面上来去自如,除了它独特的结构之外,就在于它的交互式设计系统。

每个硬币都有两面,腿轮式结构、易组装性和可扩展性等这些在我们看起来都是优点,可正是因为这些不可控因素,使得精准的控制成为一个难题。为此,研发团队专门开发了一套敏感性分析的计算工具进行仿真,并研发了一套交互式设计系统,这套系统支持手动,半自动,全自动的设计探索优化。除了自动规划设计之外,用户可以通过这套系统自己规划和设计机器人的姿态路径,真正意义上实现定制化的服务。

在机器人行进的过程中,最重要的就是对平衡的掌控,在高速运动过程中,平衡还是相对比较好掌控的,可是一旦减速,机器人就会失去平衡。Skaterbots通过向前伸展前腿以降低重心,并且前伸之后形成了一个稳定的多边形,进而,保持了机器人整体的平稳性。

马克 •雷波特认为,要想让机器人像人和动物一样自由的运动,必须让机器人具备以下三项能力:1.平衡性和动态运动能力2.对于运动的控制能力3.移动感知能力。前两项Skaterbots可谓是尽善尽美,当然它的移动感知能力也不弱。头部的摄像头不仅可以进行路况识别并及时避开障碍物,还可以通过观察进行视觉学习,据说,它看到一个溜冰者在冰上的动作后,就可以自己学会滑冰!

看到这里,如果你认为这款机器人仅仅只会滑冰,那你就想简单了,它还可以完成陪运动员们一起训练等任务。滑冰仅是它学习的一个动作,不要忘记它的变身技能,它最大的优点就是个性化定制,它的设计者希望它最终能在搜索和救援任务中发挥作用。

说到会滑冰的机器人,除了这个四足腿轮混合式Skaterbots,小编还想到那个自称世界上第一个滑冰机器人的美国水陆两栖机器人Velox。这款机器人依据仿生学原理,两侧“长”有一对波浪形飘带,它们类似鱼类的鳍,能为机器人的前进、转向提供动力,并以双曲线模式移动,鳍和片使Velox高效且超灵活。机器人可以立即反转方向或快速转弯。

Skaterbots和Velox目前均处于概念验证阶段,但它们极强的适应能力意味着它们具有许多潜在的应用场景。相信在不远的未来,它们能够在各国工程师的共同努力下适用于更多的场合,成为我们生活中的可靠帮手。

Skaterbots论文传送门:

Skaterbots论文

 

这篇关于可和波士顿动力Handle机器人 PK的滑冰选手?自由驾驭冰刀适应力强!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/174911

相关文章

基于树梅派的视频监控机器人Verybot

最近这段时间做了一个基于树梅派 ( raspberry pi ) 的视频监控机器人平台 Verybot ,现在打算把这个机器人的一些图片、视频、设计思路进行公开,并且希望跟大家一起研究相关的各种问题,下面是两张机器人的照片:         图片1:                   图片2                    这个平台的基本组成是:

创建一个大的DIV,里面的包含两个DIV是可以自由移动

创建一个大的DIV,里面的包含两个DIV是可以自由移动 <body>         <div style="position: relative; background:#DDF8CF;line-height: 50px"> <div style="text-align: center; width: 100%;padding-top: 0px;"><h3>定&nbsp;位&nbsp;

驾驭冰雪 安全无忧,韩泰高性能冬季轮胎新品上市

- 韩泰轮胎推出冬季轮胎新产品Winter i*cept iZ3和SUV专用的Winter i*cept iZ3 X - 新轮胎采用了V型花纹,冰雪路面安全性极佳,而且具有操控性好、续航里程长的优点 - 新轮胎在位于北极圈以北300km的韩泰轮胎芬兰伊瓦洛测试场进行了严苛测试,确保极寒条件的安全性 2024年8月,韩泰轮胎正式在中国市场推出新一代高性能冬季轮胎Winter i*cept

【机器人工具箱Robotics Toolbox开发笔记(二十)】机器人工具箱SerialLink I类函数参数说明

机器人工具箱中的SerialLink表示串联机器人型机器人的具体类。该类使用D-H参数描述,每个关节一组。SerialLink I类包含的参数如表1所示。 表1 SerialLink I类参数 参  数 意    义 参  数 意    义 plot 显示机器人的图形表示 jacobn 工具坐标系中的雅可比矩阵 plot3D 显示机器人3D图形模型 Jacob_dot

1800 万,财务自由了

《黑神话:悟空》 距离《黑神话:悟空》上线(8 月 20 日)上线已过去半个月,从刚开始全网热议,连官方都下场点评,到现在的逐渐回归平静。 不是游戏圈或是对数据不敏感的网友,可能会落入《黑神话:悟空》已经开始失势的"错觉"中。 但实际上,《黑神话:悟空》还在持续不断的创造新历史。 据最新的机构统计数据显示,《黑神话:悟空》上市两周,销量已突破 1800 万份,营销收入高达 8.67 亿美元

机器人助力上下料搬运,加速仓库转运自动化

近年来,国内制造业领域掀起了一股智能化改造的浪潮,众多工厂纷纷采纳富唯智能提供的先进物流解决方案,这一举措显著优化了生产流程,实现了生产效率的飞跃式增长。得益于这些成功案例,某信息技术服务企业在工厂智能物流建设的进程中,也选择了与富唯智能合作。 为了应对日益增长的物料搬运需求,匹配成品输出节拍,该公司引入了富唯智能复合机器人AMR与搬运机器人AGV,实现了仓库成品搬运自动化,大幅减少人工

【最新华为OD机试E卷-支持在线评测】机器人活动区域(100分)多语言题解-(Python/C/JavaScript/Java/Cpp)

🍭 大家好这里是春秋招笔试突围 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-E/D卷的三语言AC题解 💻 ACM金牌🏅️团队| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 🍿 最新华为OD机试D卷目录,全、新、准,题目覆盖率达 95% 以上,支持题目在线评测,专栏文章质量平均 94 分 最新华为OD机试目录: https://blog.

Dify.ai:部署自己的 AI 应用、知识库机器人,简单易用

Dify.ai:部署自己的 AI 应用、知识库机器人,简单易用 今天,来分享下 Dify.AI 这个产品,一句话介绍:可供普通人简单易用的部署生成出一个 AI 应用。这是一种使用人工智能技术来帮助团队开发和运营 AI 应用的工具。 什么是 Dify.ai Dify.ai 是一个易于使用的 LLMOps 平台,旨在帮助更多的人创建可持续的、AI 原生的应用。通过对各种应用类型的可视化编排,Di

机器人可能会在月球上提供帮助

登月是我们这个时代最具标志性的事件之一,这可能还算轻描淡写了:这是我们迄今为止在物理上探索得最远的一次。我听过一些当时的老广播,它们可以让你想象出这次航行的重要性。 现在,研究人员表示,我们可能很快就能重返月球,甚至可能很快就会有人类任务前往火星。 火星。艺术家:NASA 这次会有什么不同呢? 有一点是确定的:机器人将大力协助—— 非常多。 在麻省理工学院,我们的一些团队正在开发突破性的

【人工智能/机器学习/机器人】数学基础-学习笔记

函数 奇偶性: 偶函数: f ( − x ) = f ( x ) f(-x)=f(x) f(−x)=f(x)     y轴对称 f ( x ) = x 2 f(x)=x^2 f(x)=x2     f ( − x ) = ( − x ) 2 = x 2 = f ( x ) f(-x)=(-x)^2=x^2=f(x) f(−x)=(−x)2=x2=f(x) 奇函数: f ( − x )