百度案例:使用Alluxio提速数据查询30倍

2023-10-09 03:08

本文主要是介绍百度案例:使用Alluxio提速数据查询30倍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作为全球最大的中文互联网搜索提供商,百度在其产品数据服务系统方面经验丰富。在本案例研究中,百度的高级架构师刘少山分享了他们在生产环境中使用Alluxio的经验,以及为什么Alluxio能够带来显著的性能提升。使用Alluxio将原先的批处理查询将转换为交互式查询,这使百度能够以交互方式分析数据,从而提升了生产力,并改善了用户体验。


业务挑战

百度作为中国最大的搜索引擎,这意味着我们有很多的数据,如何管理这种规模的数据并快速提取其中的有用信息一直是一个挑战。

举例来说,庞大的数据量常常会导致查询需要花费数十分钟甚至数小时才能完成,因此需要让产品经理等待数小时才能开始下一个查询。更令人沮丧的是,改动查询后将需要重新运行整个过程。大约在一年前,我们意识到需要一个特殊的查询引擎来解决这些问题。首先,我们提出了一个目标规范:该查询引擎需要管理数PB的数据,并能在30秒内完成95%的查询。

我们将查询引擎从Hive切换到了Spark SQL(许多用例已经证明了它在延迟方面相对Hadoop MapReduce具有优势),我们期望Spark SQL能将平均查询时间降到几分钟之内。但是,它没有达到我们所希望的查询响应时间。虽然Spark SQL确实将平均查询速度提升了4倍,但仍需10分钟左右才能完成。

因此,我们再次仔细思考,挖掘分析更多细节。事实证明,这个阶段的查询瓶颈不再是CPU而是数据传输网络。由于PB级别的数据分布在多个数据中心,因此数据查询很可能需要将数据从远程数据中心传输到计算所在数据中心,这就是导致用户运行查询时出现很大延迟的原因。由于数据存储中心节点和数据计算中心节点具有不同的最优硬件规格,因此解决方案并不是将计算过程移动到存储数据中心那么简单。我们需要一个内存级的存储系统来存储常用的数据,并且该系统能够位于计算节点上。


为什么选择Alluxio

我们需要一个内存级的存储系统。该存储系统不仅能够提供高性能和可靠性,还能管理数PB的数据。我们开发了一个使用Spark SQL作为其计算引擎的查询系统,将Alluxio作为本地内存级存储解决方案。我们使用百度内部的标准查询作为压力测试方案,需要从远程数据中心提取6TB数据,然后在数据之上运行其他分析,整个压力测试持续了1个月。

结果表明,Alluxio带来了优异的性能提升。如果系统仅使用Spark SQL,平均查询需要100-150秒才能完成。加上Alluxio后,平均查询耗时10-15秒。此外,如果所有数据都存储在Alluxio本地节点上,则只需要大约5秒钟,比单独使用Spark SQL30倍。基于以上结果和系统可靠性方面考虑,我们围绕AlluxioSpark SQL构建了一个完整的大数据查询系统。

我们的系统包含以下组件:

  • 操作管理器:包装Spark SQL的持久化Spark应用程序。它接受来自查询UI的查询,并提供查询解析和查询优化功能。

  • 视图管理器:管理缓存元数据并处理来自操作管理器的查询请求。

  • Alluxio:用作存储常用数据内存级存储系统,提供计算本地性。

  • 数据仓库:基于HDFS系统的远程数据中心,用于存储数据。

下面,我们将介绍整个系统的执行流程:

  1. 查询已提交。操作管理器分析查询并询问视图管理器数据是否已在Alluxio中。

  2. 如果数据已经在Alluxio中,操作管理器从Alluxio中获取数据并对其执行分析。

  3. 如果数据不在Alluxio中,那么该数据未命中缓存。操作管理器将直接从数据仓库请求数据。同时,视图管理器启动另一个作业以从数据仓库请求相同的数据并将数据存储在Alluxio中。这样下次提交相同的查询时,数据已经在Alluxio中。


收益

系统部署后,我们使用典型的百度查询测量其性能。使用原始的Hive系统,需要超过1,000秒才能执行完成该典型查询。仅使用Spark SQL,耗时能够降低至150秒,而加上Alluxio后,耗时能够进一步降低至约20秒。该查询运行速度提高了50倍,并满足了我们为项目设置的交互式查询要求。因此,通过使用Alluxio,能够将执行耗时为15分钟的批量查询转换为耗时不到30秒的交互式查询。

在过去的一年中,该系统已部署在一个拥有100多个节点的集群中,Alluxio系统存储管理了超过2 PB数据并且使用了Alluxio高级功能——分层存储。此功能允许我们将内存作为一级存储,SSD作为二级存储,HDD作为最后级存储。将这些存储介质组合在一起,我们可以提供超过2 PB的存储空间。

除了查询性能方面的改进之外,对我们来说更重要的是整个系统的可靠性。在过去的一年中,Alluxio一直在我们的数据基础设施中稳定运行,很少遇到问题,这给了我们很多信心。因此,我们正在准备大规模部署Alluxio。首先,我们通过部署拥有1000Alluxio worker节点的集群来验证Alluxio的可扩展性。在过去的一个月里,这个拥有1000Alluxio worker节点的集群一直运行稳定,该集群提供超过50 TB的内存空间。据我们所知,这是目前世界上最大的Alluxio集群之一。


总结

我们已经验证了Alluxio能够极大地提高性能,并且可靠可扩展。接下来,我们正在逐步将不同的百度工作负载任务迁移到Alluxio集群上。例如,为了提高在线图像服务和在线图像分析的性能,我们正在与Alluxio社区密切合作,试图在Alluxio之上开发一个高性能的Key-Value存储。这样,只需要Alluxio一个存储系统:Key-Value存储可以执行有效的在线服务;对于离线分析,我们可以直接访问Alluxio获取图像数据。这大大降低了我们的开发和运营成本。

作为Alluxio的早期使用者,我们验证了它所描述的以内存为中心的分布式存储系统,以内存速度跨集群框架实现可靠的数据共享。除了可靠且具有内存速度之外, Alluxio还提供了一种基于内存的扩展存储以提供足够存储容量。

640?wx_fmt=png

这篇关于百度案例:使用Alluxio提速数据查询30倍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/169905

相关文章

mysql_mcp_server部署及应用实践案例

《mysql_mcp_server部署及应用实践案例》文章介绍了在CentOS7.5环境下部署MySQL_mcp_server的步骤,包括服务安装、配置和启动,还提供了一个基于Dify工作流的应用案例... 目录mysql_mcp_server部署及应用案例1. 服务安装1.1. 下载源码1.2. 创建独立

Mysql中RelayLog中继日志的使用

《Mysql中RelayLog中继日志的使用》MySQLRelayLog中继日志是主从复制架构中的核心组件,负责将从主库获取的Binlog事件暂存并应用到从库,本文就来详细的介绍一下RelayLog中... 目录一、什么是 Relay Log(中继日志)二、Relay Log 的工作流程三、Relay Lo

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

mybatis-plus分表实现案例(附示例代码)

《mybatis-plus分表实现案例(附示例代码)》MyBatis-Plus是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,为简化开发、提高效率而生,:本文主要介绍my... 目录文档说明数据库水平分表思路1. 为什么要水平分表2. 核心设计要点3.基于数据库水平分表注意事项示例

springboot3.x使用@NacosValue无法获取配置信息的解决过程

《springboot3.x使用@NacosValue无法获取配置信息的解决过程》在SpringBoot3.x中升级Nacos依赖后,使用@NacosValue无法动态获取配置,通过引入SpringC... 目录一、python问题描述二、解决方案总结一、问题描述springboot从2android.x

SpringBoot整合AOP及使用案例实战

《SpringBoot整合AOP及使用案例实战》本文详细介绍了SpringAOP中的切入点表达式,重点讲解了execution表达式的语法和用法,通过案例实战,展示了AOP的基本使用、结合自定义注解以... 目录一、 引入依赖二、切入点表达式详解三、案例实战1. AOP基本使用2. AOP结合自定义注解3.

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

使用Python将PDF表格自动提取并写入Word文档表格

《使用Python将PDF表格自动提取并写入Word文档表格》在实际办公与数据处理场景中,PDF文件里的表格往往无法直接复制到Word中,本文将介绍如何使用Python从PDF文件中提取表格数据,并将... 目录引言1. 加载 PDF 文件并准备 Word 文档2. 提取 PDF 表格并创建 Word 表格

使用Python实现局域网远程监控电脑屏幕的方法

《使用Python实现局域网远程监控电脑屏幕的方法》文章介绍了两种使用Python在局域网内实现远程监控电脑屏幕的方法,方法一使用mss和socket,方法二使用PyAutoGUI和Flask,每种方... 目录方法一:使用mss和socket实现屏幕共享服务端(被监控端)客户端(监控端)方法二:使用PyA