高分三号1米分辨率飞机检测识别数据集

2023-10-08 08:20

本文主要是介绍高分三号1米分辨率飞机检测识别数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

二、背景介绍
合成孔径雷达(Synthetic Aperture Radar, SAR) 是一种主动式的微波成像系统,它不受光照、云雾 和气候等自然条件影响,具备全天时、全天候对地 观测的能力,已成为遥感领域重要的信息获取平 台。近年来,随着遥感成像技术的蓬勃发展和 SAR卫星在轨数量的不断增加,SAR系统获取数据 的数量和质量得到显著提升,促进了SAR在相关领 域的发展和应用。海量的高分辨率数据为SAR图 像精细化理解提供了丰富的数据基础与支撑。 目标检测和识别是SAR图像智能化解译的重要 一环。飞机作为SAR图像中的典型目标,数量较多、 种类丰富,具有较大的观测价值。
基于SAR图像 的飞机检测识别能获取飞机目标的型号、种类、位 置、状态等信息,可有效辅助重点区域动态监视、 态势分析、紧急救援等应用。因此,利用高分辨率 SAR图像对飞机目标进行检测别具有重要的研究 意义。 近年来,随着深度学习理论和技术的发展,基于卷积神经网络的方法在SAR图像目标检测识别领域取得了较大进展。在SAR飞机检测识别方面,Zhao等人提出一种多分支空洞卷积特征金字塔方法,通过建立密集连接来减少冗余信息并突出飞机的重要特征。文献设计了一个注意力模块来融合细化低层纹理特征和高层语义特征,进一步提高飞机检测率。
在SAR舰船检测识别任务中,文献通过直接学习回归框的位置,来减少对预定义框超参数的依赖,并且进一步实现舰船目标的细粒度识别。海上舰船容易与海面形成强反射的二面角,在SAR图像中通常呈现为轮廓完整、连通性强的强散射点集合。相比海上舰船,陆地飞机目标尺寸较小,特征不容易提取,散射点之间较为离散,准确定位和识别的难度较大。针对背景中存在强散射干扰的问题,本文提出 了结合散射感知的SAR图像飞机目标检测识别一体 化的方法。总体框架如图所示,提出的方法基于 无锚框(anchor-free)算法的结构,主要由上下文引 导的特征金字塔网络(ContextGuided Feature Pyramid Network, CG-FPN)和散射感知检测头 (ScatteringAware detection Head, SA-Head)两个部分组成。

8bdfeedfd7dc4720bf78ac0ca884328c.png

二、数据集基本情况

       高分辨率SAR飞机检测识别数据集中所有图像采集自高分三号卫星,极化方式为单极化,空间分辨率为1m,成像模式为聚束式。数据集主要选用上海虹桥机场、北京首都机场和台湾桃园机场3个民用机场的影像数据,包含800×800、1000×1000、1200×1200和1500×1500共4种不同尺寸,共有4368张图片和16463个飞机目标实例。飞机的7个类别为:A220、A320/321、A330、ARJ21、Boeing737、 Boeing787和other,各个类别的实例以及数量如图1和图2所示,其中other表示不属于其余6个类别的飞机实例。

       图1 不同类别SAR飞机和光学飞机样本示例图▼116c0901bcfa4b5a9d28b779135f322f.png

 

       图2 数据集各个类别的实例数量图▼29c6d98108ff4d0584b6158dd68afa12.png

 

       在实例的标注方面,高分辨率SAR飞机检测识别数据集中所有实例目标均使用水平矩形框进行标注,与Pascal VOC格式保持一致。

       图3 数据集标注示意图▼39b4cbd621c24cb49359508eaf100448.png

 

       三、数据集的特点

       高分辨率SAR飞机检测识别数据集有以下特点:

       (1) 场景复杂:数据集包含多个民用机场不同时相的图像,这些图像覆盖面积大,背景中包含了航站楼、车辆、建筑物等设施,增加了数据集场景的复杂性。

       (2) 类别丰富:不同于一般的SAR飞机数据集,SAR-AIRcraft-1.0数据集包含了飞机目标的细粒度类别信息。此外,不同类别之间相似的散射表征增加了飞机识别的难度。

       (3) 目标密集:一张切片图像中包含多个飞机目标,多个飞机目标停靠在航站楼附近,分布较为密集,目标之间存在互相干扰,影响检测识别的准确率。

       (4) 噪声干扰:由于SAR的成像特性,图像中存在着一些相干斑噪声的干扰,给飞机目标准确检测和识别带来一定的挑战。

       (5) 任务多样:该数据集不仅支持检测任务,同时包含了类别信息,通过对数据集中飞机目标进行裁剪,得到多类别的目标切片,进而可以实现飞机的细粒度识别。此外,位置和类别信息的存在,使其可以应用在检测识别一体化任务中。

       (6) 多尺度性:该数据集中飞机目标切片的尺寸分布跨度广。如图4所示,有一部分目标尺寸在50×50以下,也有一部分飞机目标尺寸在100×100以上,整体呈现出目标多尺度的特点。

       图4 数据集飞机目标的尺寸分布图▼a5136c5c19af414fa380300bec2155fa.png

 

       四、数据集下载

高分三号1米分辨率飞机检测识别数据集可以登录:https://www.dilitanxianjia.com/11525/;文件夹内含有数据集3个压缩包,如下图所示。

e213b12c2c494d569e0cb9ff62aab84f.png

 

 

 

这篇关于高分三号1米分辨率飞机检测识别数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/163966

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X