单细胞实战(1)数据下载-数据读取-seurat对象创建

2023-10-08 07:40

本文主要是介绍单细胞实战(1)数据下载-数据读取-seurat对象创建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这篇文章我们将介绍从geo数据库下载单细胞测序数据后,多种数据格式多样本情况下,如何读取数据并创建seurat对象。

本文主要结构:

一、数据下载

二、数据读取与seurat对象创建

  • 单样本情况下各种格式数据的读取,读取后seurat对象的创建
  • 多样本情况下各种格式数据的读取,读取后seurat对象的创建、合并

一、数据下载

大家自行去GEO官网(https://www.ncbi.nlm.nih.gov/gds)搜索下载自己想要的单细胞测序数据。本文后面会提供数据用于示例代码测试。

图片

GEO数据库上提供的单细胞测序数据常见格式主要有以下几种:

  • 10x Genomics格式: matrix.mtx、genes.tsv和barcodes.tsv文件是10X Genomics单细胞转录组测序数据的标准文件格式。这些文件通常存储在一个目录中,可以使用Read10X函数从R语言中读取。

    • matrix.mtx:这是一个稀疏矩阵文件,其中包含了每个单细胞的基因表达信息。矩阵中的每一行代表一个基因,每一列代表一个单细胞,矩阵中的每个元素表示该基因在该单细胞中的表达量。
    • genes.tsv(或features.tsv):这是一个文本文件,其中包含了每个基因的信息。每一行代表一个基因,每一列代表一个属性,例如基因名称、基因编号等。
    • barcodes.tsv:这是一个文本文件,其中包含了每个单细胞的条形码信息。每一行代表一个单细胞,每一列代表一个属性,例如条形码序列、细胞类型等。
  • h5格式: 这是一种用于存储大规模数据的二进制文件格式,它可以包含多种数据类型,如矩阵、表格、图像等。

  • 压缩文本矩阵(TXT或CSV的GZ文件): 压缩文本矩阵可以用于存储单细胞测序数据的表达矩阵或元数据,它可以减少文件的大小和传输时间 。

  • h5ad格式: 它专门用于存储和分享单细胞表达数据,它使用Anndata库来创建和读取。h5ad格式可以与cellxgene或Seurat等工具兼容,进行单细胞数据的可视化和分析 。

  • h5seurat格式: 这是一种基于h5格式的文件格式,它专门用于存储和分析多模态单细胞和空间分辨率表达实验,如CITE-seq或10X Visium等技术。h5seurat格式可以与SeuratDisk等工具兼容,进行单细胞数据的读写 。

  • R数据文件(RDS/RDATA文件): 以R语言的数据文件格式存储表达式矩阵,需要R软件直接读取。

二、数据读取与seurat对象创建

单样本

单样本情况下每种格式的数据读取与seurat对象创建演示:

10x Genomics格式:

演示数据的下载:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE234527

图片

文件下载后解压,并修改名称,存放路径如下图:

图片

读取文件并创建对象的代码参考:

# 导入Seurat包
library(Seurat)# 查看当前工作目录
getwd()# 设置工作目录(将工作目录切换到指定路径下)
setwd("D:/project/scRNA")# 读取10x数据,data.dir参数指定存放文件的路径
seurat_data <- Read10X(data.dir = "./data/GSE234527/352")# 创建Seurat对象
seurat_obj <- CreateSeuratObject(counts = seurat_data,project = "GSM7470392_352",min.features = 200,min.cells = 3)# 查看Seurat对象的基本信息
seurat_obj

h5格式:

演示数据的下载:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE200874

图片

下载后解压,存放路径如图

图片

读取文件并创建对象的代码参考:

# 导入Seurat包
library(Seurat)# 查看当前工作目录
getwd()# 设置工作目录(将工作目录切换到指定路径下)
setwd("D:/project/scRNA")# 指定要读取的文件所在位置和文件名称
h5_file <- "./data/GSE200874/GSM6045825_wt_filtered_gene_bc_matrices_h5_1.h5"# 读取h5格式的文件(使用Read10X_h5函数读取h5格式的单细胞数据文件)
seurat_data <- Read10X_h5(file = h5_file)# 创建Seurat对象(使用CreateSeuratObject函数创建Seurat对象,并将读取的h5格式数据转换为Seurat对象)
seurat_obj <- CreateSeuratObject(counts = seurat_data,project = "GSM6045825_wt",min.features = 200,min.cells = 3)# 查看Seurat对象的基本信息
seurat_obj

压缩文本矩阵(TXT或CSV的GZ文件):

这两种文件建议先手动加压到本地查看一下文件内容格式。

CSV压缩GZ格式演示数据的下载:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse130148

图片

下载后文件的存放路径

图片

CSV压缩GZ格式示例代码:

# 导入Seurat包
library(Seurat)# 查看当前工作目录
getwd()# 设置工作目录(将工作目录切换到指定路径下)
setwd("D:/project/scRNA")# 使用read.csv()函数从csv.gz格式的文件中读取数据,并将第一列作为行名
seurat_data<- read.csv(gzfile("./data/GSE130148/GSE130148_raw_counts.csv.gz"), row.names = 1)# 使用CreateSeuratObject()函数创建Seurat对象,并在此处指定项目名称
seurat_obj <- CreateSeuratObject(counts = seurat_data,min.features = 200,min.cells = 3, project = "GSE130148")

txt压缩GZ格式示例代码:

# 导入Seurat包
library(Seurat)# 查看当前工作目录
getwd()# 设置工作目录(将工作目录切换到指定路径下)
setwd("D:/project/scRNA")# 使用read.table()函数从txt.gz格式的文件中读取数据,并将第一列作为行名
seurat_data<- read.table(gzfile("./data/GSE130xxx/xxxx.txt.gz"), row.names = 1, header = TRUE, sep = "\t")# 使用CreateSeuratObject()函数创建Seurat对象,并在此处指定项目名称
seurat_obj <- CreateSeuratObject(counts = seurat_data,min.features = 200,min.cells = 3, project = "GSE130xxx")

h5ad格式:

下载测试文件:

https://www.dropbox.com/s/ngs3p8n2i8y33hj/pbmc3k.h5ad?dl=0

# 下载测试文件
# https://www.dropbox.com/s/ngs3p8n2i8y33hj/pbmc3k.h5ad?dl=0# 导入所需的R包
library(Seurat)
# 安装SeuratDisk包
#remotes::install_github("mojaveazure/seurat-disk")
library(SeuratDisk)# 查看当前工作目录
getwd()# 设置工作目录(将工作目录切换到指定路径下)
setwd("D:/project/scRNA")# 将h5ad格式文件转换为h5seurat格式文件,同时指定使用的assay为"RNA"
Convert("./data/pbmc/pbmc3k.h5ad", "h5seurat", overwrite = TRUE, assay = "RNA")# 使用LoadH5Seurat()函数加载h5seurat格式文件,并创建Seurat对象
seurat_pbmc <- LoadH5Seurat("./data/pbmc/pbmc3k.h5seurat")

R数据文件(RDS/RDATA文件)

# 使用load()函数读取RDATA文件
load("path/to/your/file.Rdata")# 使用readRDS()函数读取RDS文件
my_data <- readRDS("path/to/your/file.rds")

多样本

多样本情况下我们主要关注10x Genomics格式和压缩文本矩阵(TXT或CSV的GZ文件)

10x Genomics格式多样本读取与对象创建

测试数据下载:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE234527

图片

示例代码:

# 导入Seurat包
library(Seurat)# 查看当前工作目录
getwd()# 设置工作目录(将工作目录切换到指定路径下)
setwd("D:/project/scRNA")# 获取数据文件夹下的所有样本文件列表
samples <- list.files("./data/GSE234527")# 创建一个空的列表来存储Seurat对象
seurat_list <- list()# 读取每个样本的10x数据并创建Seurat对象
for (sample in samples) {
# 拼接文件路径data.path <- paste0("./data/GSE234527/", sample)# 读取10x数据,data.dir参数指定存放文件的路径seurat_data <- Read10X(data.dir = data.path)# 创建Seurat对象,并指定项目名称为样本文件名seurat_obj <- CreateSeuratObject(counts = seurat_data,project = sample,min.features = 200,min.cells = 3)# 将Seurat对象添加到列表中seurat_list <- append(seurat_list, seurat_obj)
}# 打印所有的Seurat对象列表
seurat_list# 合并Seurat对象,将所有Seurat对象合并到一个对象中
seurat_combined <- merge(seurat_list[[1]], y = seurat_list[-1],add.cell.ids = samples)
# 打印合并后的Seurat对象
print(seurat_combined)

h5格式多样本数据读入与对象创建:

测试数据下载:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE200874

图片

下载后将数据解压:

图片

# 导入Seurat包
library(Seurat)# 设置工作目录
setwd("D:/project/scRNA")# 获取数据文件夹下的所有h5文件列表
h5_files <- list.files("./data/GSE200874", pattern = "\\.h5$")# 创建一个空的列表来存储Seurat对象
seurat_list <- list()# 循环读取每个h5文件的数据并创建Seurat对象
for (h5_file in h5_files) {# 拼接文件路径data.path <- paste0("./data/GSE200874/", h5_file)# 读取h5数据seurat_data <- Read10X_h5(filename = data.path)# 创建Seurat对象,并指定项目名称为文件名sample_name <- tools::file_path_sans_ext(basename(h5_file))seurat_obj <- CreateSeuratObject(counts = seurat_data,project = sample_name,min.features = 200,min.cells = 3)# 将Seurat对象添加到列表中seurat_list <- append(seurat_list, seurat_obj)
}# 提取下划线前面的部分
sample_names <- sub("_.*", "", h5_files)
# 合并Seurat对象,将所有Seurat对象合并到一个对象中
seurat_combined <- merge(seurat_list[[1]],y = seurat_list[-1],add.cell.ids = sample_names)
# 打印合并后的Seurat对象
print(seurat_combined)

压缩文本矩阵(TXT或CSV的GZ文件)多样本:

下载测试文件:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi

下载三个数据演示一下代码

图片

下载后解压:

图片

示例代码:


# 导入Seurat包
library(Seurat)# 导入Seurat包
library(Seurat)# 设置工作目录为存放数据文件的路径
setwd("D:/project/scRNA")# 获取所有csv.gz文件的列表
file_list <- list.files("./data/GSE150578", pattern = "\\.csv\\.gz$")# 创建一个空的列表来存储Seurat对象
seurat_list <- list()# 循环读取每个csv.gz文件的数据并创建Seurat对象
for (file in file_list) {# 拼接文件路径data.path <- paste0("./data/GSE150578/", file)# 读取csv.gz文件数据data <- read.csv(gzfile(data.path), row.names = 1)# 创建Seurat对象,并指定项目名称为文件名(去除后缀)sample_name <- tools::file_path_sans_ext(basename(file))seurat_obj <- CreateSeuratObject(counts = seurat_data,project = sample_name,min.features = 200,min.cells = 3)# 将Seurat对象添加到列表中seurat_list <- append(seurat_list, seurat_obj)
}# 提取下划线前面的部分
sample_names <- sub("_.*", "", file_list)
# 合并Seurat对象,将所有Seurat对象合并到一个对象中
seurat_combined <- merge(seurat_list[[1]],y = seurat_list[-1],add.cell.ids = sample_names)
# 打印合并后的Seurat对象
print(seurat_combined)

大家可以使用fread()等更高效的函数代替文中的read.csv()函数,但是要注意读取后数据格式是否准确。

参考链接:https://www.jianshu.com/p/5b26d7bc37b7

参考链接:https://mp.weixin.qq.com/s/M15kWdH8eDONfakNhY-enA

这篇关于单细胞实战(1)数据下载-数据读取-seurat对象创建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/163755

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

常用的jdk下载地址

jdk下载地址 安装方式可以看之前的博客: mac安装jdk oracle 版本:https://www.oracle.com/java/technologies/downloads/ Eclipse Temurin版本:https://adoptium.net/zh-CN/temurin/releases/ 阿里版本: github:https://github.com/