评价指标篇——IOU(交并比)

2023-10-07 23:29
文章标签 评价 指标 iou 交并

本文主要是介绍评价指标篇——IOU(交并比),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是IoU(Intersection over Union)

IoU是一种测量在特定数据集中检测相应物体准确度的一个标准。
即是产生的候选框(candidate bound)与原标记框(ground truth bound)的交叠率
即它们的交集与并集的比值。最理想情况是完全重叠,即比值为1。

IoU是一个简单的测量标准,只要是在输出中得出一个预测范围(bounding boxex)的任务都可以用IoU来进行测量。为了可以使IoU用于测量任意大小形状的物体检测,我们需要:

  • ground-truth bounding boxes(人为在训练集图像中标出要检测物体的大概范围)
  • 我们的算法得出的结果范围。

也就是说,这个标准用于测量真实和预测之间的相关度,相关度越高,该值越高。如下图所示。绿色标线是人为标记的正确结果(ground-truth),红色标线是算法预测的结果(predicted)。
在这里插入图片描述
IoU的计算
IoU是两个区域重叠的部分除以两个区域的集合部分得出的结果,通过设定的阈值,与这个IoU计算结果比较。
在这里插入图片描述
举例如下:绿色框是准确值,红色框是预测值。
在这里插入图片描述

基础知识:

交集:
集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集,记作A∩B。

eg:
A={1,2,3} B={2,3,4}
A n B = {2,3}

并集:
给定两个集合A,B,把他们所有的元素合并在一起组成的集合,叫做集合A与集合B的并集,记作A∪B,读作A并B。
eg:
A={1,2,3} B={2,3,4}
A U B = {1,2,3,4}

图示:
在这里插入图片描述
IOU:
在这里插入图片描述

"""
Python实现
"""import numpy as np
def compute_iou(box1, box2, wh=False):"""compute the iou of two boxes.Args:box1, box2: [xmin, ymin, xmax, ymax] (wh=False) or [xcenter, ycenter, w, h] (wh=True)wh: the format of coordinate.Return:iou: iou of box1 and box2."""if wh == False:xmin1, ymin1, xmax1, ymax1 = box1xmin2, ymin2, xmax2, ymax2 = box2else:xmin1, ymin1 = int(box1[0]-box1[2]/2.0), int(box1[1]-box1[3]/2.0)xmax1, ymax1 = int(box1[0]+box1[2]/2.0), int(box1[1]+box1[3]/2.0)xmin2, ymin2 = int(box2[0]-box2[2]/2.0), int(box2[1]-box2[3]/2.0)xmax2, ymax2 = int(box2[0]+box2[2]/2.0), int(box2[1]+box2[3]/2.0)## 获取矩形框交集对应的左上角和右下角的坐标(intersection)xx1 = np.max([xmin1, xmin2])yy1 = np.max([ymin1, ymin2])xx2 = np.min([xmax1, xmax2])yy2 = np.min([ymax1, ymax2])## 计算两个矩形框面积area1 = (xmax1-xmin1) * (ymax1-ymin1) area2 = (xmax2-xmin2) * (ymax2-ymin2)inter_area = (np.max([0, xx2-xx1])) * (np.max([0, yy2-yy1])) #计算交集面积iou = inter_area / (area1+area2-inter_area+1e-6) #计算交并比return iou

这篇关于评价指标篇——IOU(交并比)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/161138

相关文章

风控系统之指标回溯,历史数据重跑

个人博客:无奈何杨(wnhyang) 个人语雀:wnhyang 共享语雀:在线知识共享 Github:wnhyang - Overview 回顾 默认你已经看过之前那篇风控系统指标计算/特征提取分析与实现01,Redis、Zset、模版方法。 其中已经介绍了如何利用redis的zset结构完成指标计算,为了方便这篇文章的介绍,还是在正式开始本篇之前回顾一下。 时间窗口 zset

通达信指标公式解析(2)多彩MACD指标

通达信指标公式解析(2)多彩MACD指标 公式效果展示(结合主力操盘线与生命线)公式代码截图公式代码解析1. **DIF 和 DEA 的定义:**2. **MACD 值的计算与颜色条形:**3. **DIF 和 DEA 之间的带状显示:**4. **柱状线的颜色区分:**5. **价格线的绘制:**6. **金叉与死叉的标注:**7. **不同强度柱状图的绘制:**8. **总结**关于建群

基于yolov8的包装盒纸板破损缺陷测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的包装盒纸板破损缺陷检测系统是一种高效、智能的解决方案,旨在提高生产线上包装盒纸板的质量检测效率与准确性。该系统利用YOLOv8这一前沿的深度学习模型,通过其强大的目标检测能力,能够实时识别并标记出包装盒纸板上的各种破损缺陷,如划痕、撕裂、孔洞等。 在系统中,首先需对包含破损缺陷的包装盒纸板图像进行数据采集和标注,形成训练数据集。随后,利用这些数据进行模型训练,使

第一篇 第一章资金时间价值计算及应用 第二章经济效果评价

第1章 资金时间价值计算及应用 资金具有时间价值 1.1 利息的计算 1.1.1 利息和利率 I=F-P 债务人为资金需求方 债权人为资金供给方利息对经济活动的影响(1.影响企业行为 2.影响居民资产选择行为 3.影响政府行为) 利率 1.影响因素(1.社会平均利润率的高低 2.市场资金供求对比状况 3.资金要承担的风险 4.债务资金使用期限长短 5.政府宏观调控政策 6.经济周期所处

Flink实时计算指标对数方案

来源:大数据技术与架构读者投稿 作者:诸葛子房 点击右侧关注,大数据开发领域最强公众号! 点击右侧关注,暴走大数据! By  大数据技术与架构 作者简介: 诸葛子房 ,目前就职于一线互联网公司,从事大数据相关工作,了解互联网、大数据相关内容,一直在学习的路上 。

基于AI+多技术融合在流域生态系统服务评价、水文水生态分析、碳收支、气候变化影响、制图等领域中的实践应用

流域生态系统服务在环境保护与资源管理中具有不可替代的重要性。随着全球气候变化和人类活动对自然环境的压力日益增大,流域生态系统的稳定性和健康状况面临严峻挑战。水资源短缺、洪水频发、水质污染、生物多样性减少等问题,正在威胁流域内及其下游区域的人类社会福祉。因此,对流域生态系统服务的科学评估和有效管理不仅能够提升生态系统的抗逆性和恢复力,还能为区域可持续发展提供坚实的环境保障。通过GIS+技术进行的流域

Flink实战(七十二):监控(四)自定义metrics相关指标(二)

项目实现代码举例: 添加自定义监控指标,以flink1.5的Kafka读取以及写入为例,添加rps、dirtyData等相关指标信息。�kafka读取和写入重点是先拿到RuntimeContex初始化指标,并传递给要使用的序列类,通过重写序列化和反序列化方法,来更新指标信息。 不加指标的kafka数据读取、写入Demo。 public class FlinkEtlTest {priv

Flink实战(七十一):监控(三)自定义metrics相关指标(一)

0 简介 User-defined Metrics 除了系统的 Metrics 之外,Flink 支持自定义 Metrics ,即 User-defined Metrics。上文说的都是系统框架方面,对于自己的业务逻辑也可以用 Metrics 来暴露一些指标,以便进行监控。 User-defined Metrics 现在提及的都是 datastream 的 API,table、sql 可

数仓指标一致性以及核对方法

点击上方蓝色字体,选择“设为星标” 回复”面试“获取更多惊喜 数仓数据质量衡量标准 我们对数仓数据指标质量衡量标准通常有四个维度:正确性、完整性、时效性、一致性。 正确性:正确性代表了指标的可信度,如果一个指标无法保证其正确性,那么是不能提供出去使用,因为很有可能会导致作出错误的业务决策,通常会使用明细数据对比、维度交叉对比、实时对比离线等方式校验数据的正确性;另外一方面可以增加一些DQC

基于yolov8的NEU-DET钢材缺陷检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的NEU-DET钢材缺陷检测系统是一种创新的解决方案,旨在通过深度学习技术实现对钢材表面缺陷的自动检测和识别。该系统利用YOLOv8算法,该算法以其高效、准确和实时检测的特点著称。 NEU-DET数据集为该系统提供了丰富的训练资源,涵盖了热轧带钢的六种典型表面缺陷,包括轧制氧化皮、斑块、开裂、点蚀表面、内含物和划痕,每种缺陷均有大量样本,确保了模型的全面性和准确性