【OpenCV 4】图像积分图算法:integral()

2023-10-07 20:30

本文主要是介绍【OpenCV 4】图像积分图算法:integral(),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、编程环境:

OpenCV 4.1.0
IDEVisual Studio 2017 Enterprise (15.9.14)
操作系统Windows 10 x64 中文专业版 (1903)

二、图像积分图算法:

积分图像是Crow在1984年首次提出,是为了在多尺度透视投影中提高渲染速度,是一种快速计算图像区域和与平方和的算法。

其核心思想是对每个图像建立自己的积分图查找表,在图像积分处理计算阶段根据预先建立的积分图查找表,直接查找从而实现对均值卷积线性时间计算,做到了卷积执行的时间与半径窗口大小的无关联。

图像积分图在图像特征提取 HAAR/SURF、二值图像分析、图像相似相关性NCC计算、图像卷积快速计算等方面均有应用,是图像处理中的经典算法之一。

图像积分图建立与查找 在积分图像(Integral Image - ii)上任意位置(x, y)处的ii(x, y)表示该点左上角所有像素之和, 其中(x,y)是图像像素点坐标。

三、程序说明:

  • OpenCV 中的 integral()函数:
void integral( InputArray src, OutputArray sum,OutputArray sqsum, int sdepth = -1, int sqdepth = -1 );

 第1个参数 src:输入图像。

第2个参数 sum:和表。 

第3个参数 sqsum:平方和表。

第4个参数 tilted:瓦块和表。

第5个参数 sdepth : 默认值-1。和表数据深度常见CV_32S。

第6个参数 sqdepth: 默认值 -1。平方和表数据深度常见 CV_32F。

 

四、示例程序:

#include <opencv2/opencv.hpp>
#include <iostream>using namespace cv;
using namespace std;void blur_demo(Mat &image, Mat &sum);
void edge_demo(Mat &image, Mat &sum);
int getblockSum(Mat &sum, int x1, int y1, int x2, int y2, int i);int main(int argc, char* argv[]) {Mat src = imread("../images/test.jpg");if (src.empty()) {printf("不能打开图像!\n");return -1;}namedWindow("input", WINDOW_AUTOSIZE);imshow("input", src);// 计算积分图Mat sum, sqrsum;integral(src, sum, sqrsum, CV_32S, CV_32F);// 积分图应用edge_demo(src, sum);blur_demo(src, sum);waitKey(0);return 0;
}void blur_demo(Mat &image, Mat &sum) {int w = image.cols;int h = image.rows;Mat result = Mat::zeros(image.size(), image.type());int x2 = 0, y2 = 0;int x1 = 0, y1 = 0;int ksize = 5;int radius = ksize / 2;int ch = image.channels();int cx = 0, cy = 0;for (int row = 0; row < h + radius; row++) {y2 = (row + 1) > h ? h : (row + 1);y1 = (row - ksize) < 0 ? 0 : (row - ksize);for (int col = 0; col < w + radius; col++) {x2 = (col + 1) > w ? w : (col + 1);x1 = (col - ksize) < 0 ? 0 : (col - ksize);cx = (col - radius) < 0 ? 0 : col - radius;cy = (row - radius) < 0 ? 0 : row - radius;int num = (x2 - x1)*(y2 - y1);for (int i = 0; i < ch; i++) {// 积分图查找和表,计算卷积int s = getblockSum(sum, x1, y1, x2, y2, i);result.at<Vec3b>(cy, cx)[i] = saturate_cast<uchar>(s / num);}}}imshow("blur_demo", result);
}/**
* 3x3 sobel 垂直边缘检测演示
*/
void edge_demo(Mat &image, Mat &sum) {int w = image.cols;int h = image.rows;Mat result = Mat::zeros(image.size(), CV_32SC3);int x2 = 0, y2 = 0;int x1 = 0, y1 = 0;int ksize = 3; // 算子大小,可以修改,越大边缘效应越明显int radius = ksize / 2;int ch = image.channels();int cx = 0, cy = 0;for (int row = 0; row < h + radius; row++) {y2 = (row + 1) > h ? h : (row + 1);y1 = (row - ksize) < 0 ? 0 : (row - ksize);for (int col = 0; col < w + radius; col++) {x2 = (col + 1) > w ? w : (col + 1);x1 = (col - ksize) < 0 ? 0 : (col - ksize);cx = (col - radius) < 0 ? 0 : col - radius;cy = (row - radius) < 0 ? 0 : row - radius;int num = (x2 - x1)*(y2 - y1);for (int i = 0; i < ch; i++) {// 积分图查找和表,计算卷积int s1 = getblockSum(sum, x1, y1, cx, y2, i);int s2 = getblockSum(sum, cx, y1, x2, y2, i);result.at<Vec3i>(cy, cx)[i] = saturate_cast<int>(s2 - s1);}}}Mat dst, gray;convertScaleAbs(result, dst);normalize(dst, dst, 0, 255, NORM_MINMAX);cvtColor(dst, gray, COLOR_BGR2GRAY);imshow("edge_demo", gray);
}int getblockSum(Mat &sum, int x1, int y1, int x2, int y2, int i) {int tl = sum.at<Vec3i>(y1, x1)[i];int tr = sum.at<Vec3i>(y2, x1)[i];int bl = sum.at<Vec3i>(y1, x2)[i];int br = sum.at<Vec3i>(y2, x2)[i];int s = (br - bl - tr + tl);return s;
}

四、运行效果:

 

这篇关于【OpenCV 4】图像积分图算法:integral()的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/160239

相关文章

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖