区块链中的密码学(二)-RSA算法分析和实现

2023-10-07 17:20

本文主要是介绍区块链中的密码学(二)-RSA算法分析和实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

密码学领域中,加密算法主要分为对称加密和非对称加密,随着信息时代安全性要求越来越高,对称加密因为其易被破解的原因逐渐被舍弃。而RSA算法是目前密码学世界中比较流行的非对称加密算法,命名是根据其发明者Rives,Shamir,Adleman三人的名字缩写而来。讲到RSA就不得不提到最近"黎曼猜想被正面后RSA算法不在安全"的传言。带着这个问题,讲述完RSA的原理以后会顺带讲一下即便"黎曼猜想"被证实是否对目前一些基于RSA算法的区块链项目有影响。本文的读者默认对于素数,互质,去模的数学概念有一定的了解。

什么是非对称加密?

加密就是对一段明文信息进行特殊操作产生让人无法理解的密文,而解密就是反向前一步的操作。非对称加密就是整个加密过程中需要两个秘钥:公钥和私钥。公钥和私钥是一对,对一段明文进行公钥加密以后只有对应的私钥能解密。大致过程如下:

 

RSA加密

RSA加密的过程定义的公式如下:

 

简单说,明文的E次方对N取模的结果就是密文。相信到这里读者的疑问都是E和N到底是什么?其实这里的E和N 就是RSA加密的公钥,它们的用法我已经介绍过了,通常暴露给其他使用者的是E和N的组合。

RSA解密

RSA解密的过程定义如下:

 

 

对密文取D次方,在对N取模得到的结果就是明文。这里的D和N的组合就是RSA算法的秘钥,这一步的N和加密用到的N是同一个数。

RSA 生产密钥对

通过上面的两个公式可以看到,只要知道E,D,N的值就很容易实现一次RSA加解密的过程。下面介绍一下这三个数生成的过程:

1.首先准备两个很大的质数p,q。这两个数的选择依据:如果p,q很大,算法的安全性会很高,但是相对应的计算时间会增长。一般编程语言都有对应的库用来生成这样的数据。计算p和q的乘积就得到了值N。

2.根据欧拉函数,不大于N且与N互质的整数个数有(p-1)(q-1)个。φ(n) =(q-1)*(p-1);随机选择一个整数e,要求是φ(n)>e>1,并且e与φ(n)互质,一般选择65537(如果范围允许的话)。

3.前两步生成了公钥,下面生成私钥需要的D:

D需要满足条件:

D的值就是 ( φ(n)的倍数+1)/E;

到这一步就简单的实现RSA算法的加解密过程。

RSA算法安全性

相信通过上面的过程读者应该能发现,RSA运用了大量的质数运算,这也正是RSA算法的核心:当p和q是一个大素数的时候,从它们的积pq去分解因子p和q,这是一个公认的数学难题。所以当p,q的值足够大的时候,是很难根据p和q的乘积计算出p和q的值的。注意这里用的是”很难“,这也是RSA算法的缺陷,没有任何理论或概率方面的算法证明RSA算法的破解难度,所以其安全性保障也仅仅在于此,并没有如之前讲SHA256时类比宇宙中原子数量来证明碰撞的难度。RSA的安全性问题还在于这些因式分解算法随着被因式分解的数字变得越大而变得越有效率。也就是说RSA算法的安全性在一定程度上依赖于私钥的长短,而不是其本身的算法。

RSA算法和”黎曼猜想“

在文章的开头讲述了黎曼猜想,今年9月24号,英国著名数学家迈克尔·阿提亚提出了他验证黎曼猜想的思路。我们这里不打算花费大量的篇幅介绍”黎曼猜想“和证明过程。只是希望从本质上告诉读者,”黎曼猜想“的证实和RSA算法的破解是两码事。总结起来一句话就是:”黎曼猜想“被证实的结果是证明了素数的分布是有规律的,它能够帮助我们快速的定位素数的位置。然而想要破解RSA算法的本质是对两个大质数的乘积进行因式分解,这个本质上跟”黎曼猜想“的被证实没有关系。

转载于:https://www.cnblogs.com/gzhlt/p/10270529.html

这篇关于区块链中的密码学(二)-RSA算法分析和实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/159259

相关文章

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

Java CompletableFuture如何实现超时功能

《JavaCompletableFuture如何实现超时功能》:本文主要介绍实现超时功能的基本思路以及CompletableFuture(之后简称CF)是如何通过代码实现超时功能的,需要的... 目录基本思路CompletableFuture 的实现1. 基本实现流程2. 静态条件分析3. 内存泄露 bug

C#实现添加/替换/提取或删除Excel中的图片

《C#实现添加/替换/提取或删除Excel中的图片》在Excel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更加美观,下面我们来看看如何在C#中实现添加/替换/提取或删除E... 在Excandroidel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.