拓端tecdat|R语言基于Bootstrap的线性回归预测置信区间估计方法

本文主要是介绍拓端tecdat|R语言基于Bootstrap的线性回归预测置信区间估计方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近我们被客户要求撰写关于Bootstrap的研究报告,包括一些图形和统计输出。

相关视频:什么是Bootstrap自抽样及应用R语言线性回归预测置信区间实例

什么是Bootstrap自抽样及R语言Bootstrap线性回归预测置信区间

,时长05:38

我们知道参数的置信区间的计算,这些都服从一定的分布(t分布、正态分布),因此在标准误前乘以相应的t分值或Z分值。但如果我们找不到合适的分布时,就无法计算置信区间了吗?幸运的是,有一种方法几乎可以用于计算各种参数的置信区间,这就是Bootstrap 法。

本文使用BOOTSTRAP来获得预测的置信区间。我们将在线性回归基础上讨论。


> reg=lm(dist~speed,data=cars)
> points(x,predict(reg,newdata= data.frame(speed=x)))

这是一个单点预测。当我们想给预测一个置信区间时,预测的置信区间取决于参数估计误差。

预测置信区间

让我们从预测的置信区间开始


> for(s in 1:500){
+ indice=sample(1:n,size=n,
+ replace=TRUE)
+ points(x,predict(reg,newdata=data.frame(speed=x)),pch=19,col="blue")

蓝色值是通过在我们的观测数据库中重新取样获得的可能预测值。值得注意的是,在残差正态性假设下(回归线的斜率和常数估计值),置信区间(90%)如下所示:

predict(reg,interval ="confidence",

在这里,我们可以比较500个生成数据集上的值分布,并将经验分位数与正态假设下的分位数进行比较,

> hist(Yx,proba=TRUE
> boxplot(Yx,horizontal=TRUE
> polygon(c( x ,rev(x I]))))

可以看出,经验分位数与正态假设下的分位数是可以比较的。

 > quantile(Yx,c(.05,.95))5%      95% 
58.63689 70.31281 + level=.9,newdata=data.frame(speed=x)) fit      lwr      upr
1 65.00149 59.65934 70.34364

感兴趣变量的可能值

现在让我们看看另一种类型的置信区间,关于感兴趣变量的可能值。这一次,除了提取新样本和计算预测外,我们还将在每次绘制时添加噪声,以获得可能的值。

> for(s in 1:500){
+ indice=sample(1:n,size=n,
+ base=cars[indice,]
+ erreur=residuals(reg)
+ predict(reg,newdata=data.frame(speed=x))+E

在这里,我们可以(首先以图形方式)比较通过重新取样获得的值和在正态假设下获得的值,

> hist(Yx,proba=TRUE)
> boxplot(Yx) abline(v=U[2:3)
> polygon(c(D$x[I,rev(D$x[I])

数值上给出了以下比较

> quantile(Yx,c(.05,.95))5%      95% 
44.43468 96.01357 
U=predict(reg,interval ="prediction"fit      lwr      upr
1 67.63136 45.16967 90.09305

这一次,右侧有轻微的不对称。显然,我们不能假设高斯残差,因为有更大的正值,而不是负值。考虑到数据的性质,这是有意义的(制动距离不能是负数)。

然后开始讨论在供应中使用回归模型。为了获得具有独立性,有人认为必须使用增量付款的数据,而不是累计付款。

可以创建一个数据库,解释变量是行和列。

> base=data.frame(
+ y> head(base,12)y   ai bj
1  3209 2000  0
2  3367 2001  0
3  3871 2002  0
4  4239 2003  0
5  4929 2004  0
6  5217 2005  0
7  1163 2000  1
8  1292 2001  1
9  1474 2002  1
10 1678 2003  1
11 1865 2004  1
12   NA 2005  1

然后,我们可以从基于对数增量付款数据的回归模型开始,该模型基于对数正态模型

Coefficients:Estimate Std. Error t value Pr(>|t|)    
(Intercept)         7.9471     0.1101  72.188 6.35e-15 ***
as.factor(ai)2001   0.1604     0.1109   1.447  0.17849    
as.factor(ai)2002   0.2718     0.1208   2.250  0.04819 *  
as.factor(ai)2003   0.5904     0.1342   4.399  0.00134 ** 
as.factor(ai)2004   0.5535     0.1562   3.543  0.00533 ** 
as.factor(ai)2005   0.6126     0.2070   2.959  0.01431 *  
as.factor(bj)1     -0.9674     0.1109  -8.726 5.46e-06 ***
as.factor(bj)2     -4.2329     0.1208 -35.038 8.50e-12 ***
as.factor(bj)3     -5.0571     0.1342 -37.684 4.13e-12 ***
as.factor(bj)4     -5.9031     0.1562 -37.783 4.02e-12 ***
as.factor(bj)5     -4.9026     0.2070 -23.685 4.08e-10 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.1753 on 10 degrees of freedom(15 observations deleted due to missingness)
Multiple R-squared: 0.9975,	Adjusted R-squared: 0.9949 
F-statistic: 391.7 on 10 and 10 DF,  p-value: 1.338e-11 > 
exp(predict(reg1,
+ newdata=base)+summary(reg1)$sigma^2/2)[,1]   [,2] [,3] [,4] [,5] [,6]
[1,] 2871.2 1091.3 41.7 18.3  7.8 21.3
[2,] 3370.8 1281.2 48.9 21.5  9.2 25.0
[3,] 3768.0 1432.1 54.7 24.0 10.3 28.0
[4,] 5181.5 1969.4 75.2 33.0 14.2 38.5
[5,] 4994.1 1898.1 72.5 31.8 13.6 37.1
[6,] 5297.8 2013.6 76.9 33.7 14.5 39.3> sum(py[is.na(y)])
[1] 2481.857

这与链式梯度法的结果略有不同,但仍然具有可比性。我们也可以尝试泊松回归(用对数链接)

glm(y~
+ as.factor(ai)+
+ as.factor(bj),data=base,
+ family=poisson)Coefficients:Estimate Std. Error z value Pr(>|z|)    
(Intercept)        8.05697    0.01551 519.426  < 2e-16 ***
as.factor(ai)2001  0.06440    0.02090   3.081  0.00206 ** 
as.factor(ai)2002  0.20242    0.02025   9.995  < 2e-16 ***
as.factor(ai)2003  0.31175    0.01980  15.744  < 2e-16 ***
as.factor(ai)2004  0.44407    0.01933  22.971  < 2e-16 ***
as.factor(ai)2005  0.50271    0.02079  24.179  < 2e-16 ***
as.factor(bj)1    -0.96513    0.01359 -70.994  < 2e-16 ***
as.factor(bj)2    -4.14853    0.06613 -62.729  < 2e-16 ***
as.factor(bj)3    -5.10499    0.12632 -40.413  < 2e-16 ***
as.factor(bj)4    -5.94962    0.24279 -24.505  < 2e-16 ***
as.factor(bj)5    -5.01244    0.21877 -22.912  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for poisson family taken to be 1)Null deviance: 46695.269  on 20  degrees of freedom
Residual deviance:    30.214  on 10  degrees of freedom(15 observations deleted due to missingness)
AIC: 209.52Number of Fisher Scoring iterations: 4> predict(reg2,
newdata=base,type="response")> sum(py2[is.na(y)])
[1] 2426.985

预测结果与链式梯度法得到的估计值吻合。克劳斯·施密特(Klaus Schmidt)和安吉拉·温什(Angela Wünsche)于1998年在链式梯度法、边际和最大似然估计中建立了与最小偏差方法的联系。


这篇关于拓端tecdat|R语言基于Bootstrap的线性回归预测置信区间估计方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/156936

相关文章

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::