拓端tecdat|R语言基于Bootstrap的线性回归预测置信区间估计方法

本文主要是介绍拓端tecdat|R语言基于Bootstrap的线性回归预测置信区间估计方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近我们被客户要求撰写关于Bootstrap的研究报告,包括一些图形和统计输出。

相关视频:什么是Bootstrap自抽样及应用R语言线性回归预测置信区间实例

什么是Bootstrap自抽样及R语言Bootstrap线性回归预测置信区间

,时长05:38

我们知道参数的置信区间的计算,这些都服从一定的分布(t分布、正态分布),因此在标准误前乘以相应的t分值或Z分值。但如果我们找不到合适的分布时,就无法计算置信区间了吗?幸运的是,有一种方法几乎可以用于计算各种参数的置信区间,这就是Bootstrap 法。

本文使用BOOTSTRAP来获得预测的置信区间。我们将在线性回归基础上讨论。


> reg=lm(dist~speed,data=cars)
> points(x,predict(reg,newdata= data.frame(speed=x)))

这是一个单点预测。当我们想给预测一个置信区间时,预测的置信区间取决于参数估计误差。

预测置信区间

让我们从预测的置信区间开始


> for(s in 1:500){
+ indice=sample(1:n,size=n,
+ replace=TRUE)
+ points(x,predict(reg,newdata=data.frame(speed=x)),pch=19,col="blue")

蓝色值是通过在我们的观测数据库中重新取样获得的可能预测值。值得注意的是,在残差正态性假设下(回归线的斜率和常数估计值),置信区间(90%)如下所示:

predict(reg,interval ="confidence",

在这里,我们可以比较500个生成数据集上的值分布,并将经验分位数与正态假设下的分位数进行比较,

> hist(Yx,proba=TRUE
> boxplot(Yx,horizontal=TRUE
> polygon(c( x ,rev(x I]))))

可以看出,经验分位数与正态假设下的分位数是可以比较的。

 > quantile(Yx,c(.05,.95))5%      95% 
58.63689 70.31281 + level=.9,newdata=data.frame(speed=x)) fit      lwr      upr
1 65.00149 59.65934 70.34364

感兴趣变量的可能值

现在让我们看看另一种类型的置信区间,关于感兴趣变量的可能值。这一次,除了提取新样本和计算预测外,我们还将在每次绘制时添加噪声,以获得可能的值。

> for(s in 1:500){
+ indice=sample(1:n,size=n,
+ base=cars[indice,]
+ erreur=residuals(reg)
+ predict(reg,newdata=data.frame(speed=x))+E

在这里,我们可以(首先以图形方式)比较通过重新取样获得的值和在正态假设下获得的值,

> hist(Yx,proba=TRUE)
> boxplot(Yx) abline(v=U[2:3)
> polygon(c(D$x[I,rev(D$x[I])

数值上给出了以下比较

> quantile(Yx,c(.05,.95))5%      95% 
44.43468 96.01357 
U=predict(reg,interval ="prediction"fit      lwr      upr
1 67.63136 45.16967 90.09305

这一次,右侧有轻微的不对称。显然,我们不能假设高斯残差,因为有更大的正值,而不是负值。考虑到数据的性质,这是有意义的(制动距离不能是负数)。

然后开始讨论在供应中使用回归模型。为了获得具有独立性,有人认为必须使用增量付款的数据,而不是累计付款。

可以创建一个数据库,解释变量是行和列。

> base=data.frame(
+ y> head(base,12)y   ai bj
1  3209 2000  0
2  3367 2001  0
3  3871 2002  0
4  4239 2003  0
5  4929 2004  0
6  5217 2005  0
7  1163 2000  1
8  1292 2001  1
9  1474 2002  1
10 1678 2003  1
11 1865 2004  1
12   NA 2005  1

然后,我们可以从基于对数增量付款数据的回归模型开始,该模型基于对数正态模型

Coefficients:Estimate Std. Error t value Pr(>|t|)    
(Intercept)         7.9471     0.1101  72.188 6.35e-15 ***
as.factor(ai)2001   0.1604     0.1109   1.447  0.17849    
as.factor(ai)2002   0.2718     0.1208   2.250  0.04819 *  
as.factor(ai)2003   0.5904     0.1342   4.399  0.00134 ** 
as.factor(ai)2004   0.5535     0.1562   3.543  0.00533 ** 
as.factor(ai)2005   0.6126     0.2070   2.959  0.01431 *  
as.factor(bj)1     -0.9674     0.1109  -8.726 5.46e-06 ***
as.factor(bj)2     -4.2329     0.1208 -35.038 8.50e-12 ***
as.factor(bj)3     -5.0571     0.1342 -37.684 4.13e-12 ***
as.factor(bj)4     -5.9031     0.1562 -37.783 4.02e-12 ***
as.factor(bj)5     -4.9026     0.2070 -23.685 4.08e-10 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.1753 on 10 degrees of freedom(15 observations deleted due to missingness)
Multiple R-squared: 0.9975,	Adjusted R-squared: 0.9949 
F-statistic: 391.7 on 10 and 10 DF,  p-value: 1.338e-11 > 
exp(predict(reg1,
+ newdata=base)+summary(reg1)$sigma^2/2)[,1]   [,2] [,3] [,4] [,5] [,6]
[1,] 2871.2 1091.3 41.7 18.3  7.8 21.3
[2,] 3370.8 1281.2 48.9 21.5  9.2 25.0
[3,] 3768.0 1432.1 54.7 24.0 10.3 28.0
[4,] 5181.5 1969.4 75.2 33.0 14.2 38.5
[5,] 4994.1 1898.1 72.5 31.8 13.6 37.1
[6,] 5297.8 2013.6 76.9 33.7 14.5 39.3> sum(py[is.na(y)])
[1] 2481.857

这与链式梯度法的结果略有不同,但仍然具有可比性。我们也可以尝试泊松回归(用对数链接)

glm(y~
+ as.factor(ai)+
+ as.factor(bj),data=base,
+ family=poisson)Coefficients:Estimate Std. Error z value Pr(>|z|)    
(Intercept)        8.05697    0.01551 519.426  < 2e-16 ***
as.factor(ai)2001  0.06440    0.02090   3.081  0.00206 ** 
as.factor(ai)2002  0.20242    0.02025   9.995  < 2e-16 ***
as.factor(ai)2003  0.31175    0.01980  15.744  < 2e-16 ***
as.factor(ai)2004  0.44407    0.01933  22.971  < 2e-16 ***
as.factor(ai)2005  0.50271    0.02079  24.179  < 2e-16 ***
as.factor(bj)1    -0.96513    0.01359 -70.994  < 2e-16 ***
as.factor(bj)2    -4.14853    0.06613 -62.729  < 2e-16 ***
as.factor(bj)3    -5.10499    0.12632 -40.413  < 2e-16 ***
as.factor(bj)4    -5.94962    0.24279 -24.505  < 2e-16 ***
as.factor(bj)5    -5.01244    0.21877 -22.912  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for poisson family taken to be 1)Null deviance: 46695.269  on 20  degrees of freedom
Residual deviance:    30.214  on 10  degrees of freedom(15 observations deleted due to missingness)
AIC: 209.52Number of Fisher Scoring iterations: 4> predict(reg2,
newdata=base,type="response")> sum(py2[is.na(y)])
[1] 2426.985

预测结果与链式梯度法得到的估计值吻合。克劳斯·施密特(Klaus Schmidt)和安吉拉·温什(Angela Wünsche)于1998年在链式梯度法、边际和最大似然估计中建立了与最小偏差方法的联系。


这篇关于拓端tecdat|R语言基于Bootstrap的线性回归预测置信区间估计方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/156936

相关文章

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

C语言 | Leetcode C语言题解之第393题UTF-8编码验证

题目: 题解: static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num & MASK1) == 0) {return