Unity大面积草地渲染——3、使用GPUInstancing渲染大面积的草

2023-10-07 03:20

本文主要是介绍Unity大面积草地渲染——3、使用GPUInstancing渲染大面积的草,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录
1、Shader控制一棵草的渲染
2、草地的动态交互
3、使用GPUInstancing渲染大面积的草
4、对大面积草地进行区域剔除和显示等级设置

大家好,我是阿赵。
这里开始讲大面积草地渲染的第三个部分,使用GPU Instancing来渲染大面积的草。

一、在不使用GPU Instancing时的渲染情况

为了能看性能明显一点,我写了个工具,在10乘10的范围内生成了一万棵草。
在这里插入图片描述

由于我的电脑显卡不算很差,所以可以看得到fps还能维持一百多。看看下面的参数,可以发现,渲染的三角形数有120多万,Batches有8517次,Saved by batching是0次,然后实际SetPass有8次。
这些数据代表了什么呢?
首先,为什么Batches有8千多次呢?
这是因为,我这里所有的草都是使用了同一个材质球,而同一个材质球按道理来说是可以合并渲染的。Batches指的是在运行过程中,通过消耗CPU的性能,每一帧动态的去判断哪些模型可以合并渲染,然后进行合并,最后推送到渲染管线。虽然我生成了10000棵草,但并不是所有草都进入到摄像机的裁剪视锥,只有8000多棵进入了,所以Batches是8000多。
在这里插入图片描述

如果把摄像机拉远一点,然后把地面隐藏了,在看到10000棵草的情况下,这个Batches就是10001了。10000棵草,再加一个背景色。

然后,为什么Saved by batching是0次呢?
所谓的Saved by batching,指的是计算完一次的合并数据,可以保存下来,下一帧不需要再重新计算,就可以直接的渲染了。因为这些草都是自然渲染的,没有经过任何技术的预处理,所以并没有可以保存的合并渲染数据,只能每一帧都重复的去计算。所以Saved by batching是0次,也就是完全没有。

最后,SetPass calls是8次,说明了实际上GPU执行了8次的渲染。由于GPU是并行计算的,根据显卡的性能,一次渲染可能可以渲染数百万个三角形,所以在上面已经Batches合批的情况下,显卡可以把所有草一次渲染完。从上面拉远了之后把地面隐藏的结果看,SetPass calls变成了2次。这是因为其中有6次是那个地面渲染导致的。没有了地面之后,所有草一次,背景色一次,所以是2次。

所以,最后得到的结果是,如果在显卡性能还比较好的情况下,这次的渲染并没有什么压力,因为只有2次SetPass。但对CPU的压力比较大,每一帧需要计算上万次的合批数据。这里的帧数看着还过得去,是因为我的电脑CPU也还过得去,是第10代的i7处理器。
至于面数的问题,120万面是有点多的,这个问题的解决办法我会在下一篇文章里面说,这里先不讨论。
从经验上来说,我们做游戏,特别是手机游戏,Batches的数量一般要控制在100左右,不然CPU每一帧都高负荷的计算,虽然可能不掉帧,但发热是肯定的。可能游戏运行5分钟,你的手机就已经烫到拿不住了。

于是,我们要想办法去考虑一下,怎样把合批的次数给降低?
Unity其实一直有提供2种合批方式,一种是刚才通过CPU的动态合批,另外一种是静态合批。
静态合批的使用很简单,直接选择需要合批的东西,然后勾选Batching Static选项就可以了。
在这里插入图片描述

于是也可以试试,如果用静态合批,会有怎样的结果:
在这里插入图片描述

从数据上看,Batches大幅度的降低了,好像结果不错。但仔细看场景里面的草,会发现颜色发生了变化。
然后静态合批还有一个很重要的特点,就是参与了静态合批的模型,它们的网格是已经合并成一个大网格了,所以在运行的时候,你可以显示隐藏某个模型,但不能移动、旋转或者缩放某个模型了。
这里我勾选了静态合批之后,风吹草的动画和球体交互的动画还是可以播放的,这是因为虽然合并成了大网格,但Shader里面的顶点程序还是能根据顶点坐标正常的计算。

二、使用GPU Instancing时的渲染情况

从这里开始,我们试一下使用GPU Instancing功能,看看效果如何。
在这里插入图片描述

这是使用了GPU Instancing之后的性能情况,可以看到,Batches降低到24,根据上面的经验。然后Saved by batching变成了8000多个,三角面数是120万,SetPass数还是8
在这里插入图片描述

和上面的做法一样,拉远了摄像机,并且把地面隐藏了,可以看到实际Batches是21,SetPass calls是2。
从结果可以看出,使用了GPU Instancing之后,渲染的三角面数并没有降低,但Batches降低了,比之前的静态合批还低,这是因为静态合批的大模型网格还是要遵循Unity本身一个网格的顶点数不能超过65536个的规则,而GPU Instancing是没有这个限制,但同一个渲染批次渲染的物体最大只能1023个。
在Batches大幅度降低之后,草地上的草从外观上看并没有什么变化,而且每棵草都可以移动、旋转和缩放,没有任何限制。

三、怎样使用GPU Instancing

1、Shader修改

在这里插入图片描述

使用GPU Instancing的方式很简单,在材质球上面勾选Enable GPU Instancing,就可以了。
不过如果你自己写Shader,会发现材质球上面根本没有这个选项。如果想出现这个选项,需要在Shader里面加点东西:
(1)#pragma multi_compile_instancing
(2)在appdata和v2f结构体里面添加UNITY_VERTEX_INPUT_INSTANCE_ID
(3)在顶点程序和片段程序里面添加UNITY_SETUP_INSTANCE_ID

2、程序调用渲染方法

刚刚介绍的方法,是直接把勾选了Enable GPU Instancing的模型放在场景里面渲染,还可以有另外一种方式,不需要在场景里面摆放模型,而是通过使用渲染的API,传入需要渲染的网格模型、材质球,还有需要摆放模型的Matrix4x4矩阵,让程序自己去渲染。
可以使用的API有2种,各位可以查阅Unity自带的帮助文档:

1.Graphics.DrawMeshInstanced

在这里插入图片描述

使用方法举例:

Graphics.DrawMeshInstanced(mesh, 0, mat, matrixs, matrixs.Length);

之前漏了说,这个API一次渲染的长度是不能超过1023的,所以这里的matrixs矩阵数组,我们要自己计算一下长度,如果超出了1023个,就要新建数组来继续存放。

2.CommandBuffer.DrawMeshInstanced

在这里插入图片描述

使用方法举例:

CommandBuffer mBuff = new CommandBuffer();
mBuff.DrawMeshInstanced(mesh, 0, mat,0, matrixs, matrixs.Length);
Camera.main.AddCommandBuffer(CameraEvent.BeforeForwardOpaque, mBuff);

四、完整Shader

Shader "azhao/Grass"
{Properties{_MainTex("MainTex", 2D) = "white" {}_hmin("hmin", Range(0 , 1)) = 0_hmax("hmax", Range(0 , 1)) = 1_hOffset("hOffset", Range(-1 , 1)) = 0_vmin("vmin", Range(0 , 1)) = 0_vmax("vmax", Range(0 , 1)) = 1_vOffset("vOffset", Range(-5 , 5)) = 0_topCol("topCol", Color) = (0,1,0,0)_windOffset("windOffset", Vector) = (0,0,0,0)_bottomCol("bottomCol", Color) = (0,0,0,0)_roleMul("roleMul", Range(0 , 10)) = 0_roleHOffset("roleHOffset", Range(0 , 10)) = 0}SubShader{Tags{"Queue" = "AlphaTest" "IgnoreProjector" = "True" "RenderType" = "TransparentCutout" }Cull OffPass{CGPROGRAM#pragma vertex vert#pragma fragment frag//要使用GPU Instancing必须加上这句#pragma multi_compile_instancing#include "UnityShaderVariables.cginc"#pragma target 3.0#include "UnityCG.cginc"struct appdata{float4 vertex : POSITION;float2 uv : TEXCOORD0;//要使用GPU Instancing必须加上这句UNITY_VERTEX_INPUT_INSTANCE_ID};struct v2f{                float4 pos : SV_POSITION;float2 uv : TEXCOORD0;float3 centerPos : TEXCOORD1;float3 worldPos : TEXCOORD2;float3 hvVal : TEXCOORD3;//要使用GPU Instancing必须加上这句UNITY_VERTEX_INPUT_INSTANCE_ID};uniform float _hmin;uniform float _hmax;uniform float _vmin;uniform float _vmax;uniform float _vOffset;uniform float2 _windOffset;uniform float3 rolePos;uniform float _roleMul;uniform float _hOffset;uniform float _roleHOffset;uniform sampler2D _MainTex;uniform float4 _MainTex_ST;uniform float4 _topCol;uniform float4 _bottomCol;SamplerState sampler_MainTex;v2f vert (appdata v){v2f o;//要使用GPU Instancing必须加上这句UNITY_SETUP_INSTANCE_ID(v);o.uv = TRANSFORM_TEX(v.uv, _MainTex);o.centerPos = mul(unity_ObjectToWorld, float4(float3(0, 0, 0), 1)).xyz;o.worldPos = mul(unity_ObjectToWorld, v.vertex);float hVal = smoothstep(_hmin, _hmax, o.worldPos.y - o.centerPos.y);float vVal = smoothstep(_vmin, _vmax, distance(o.worldPos.xz, o.centerPos.xz));float hvVal = hVal * vVal;o.hvVal = float3(hVal, vVal, hvVal);float hVertexOffset = hvVal * _hOffset;float2 vVertexOffset = (o.worldPos.xz - o.centerPos.xz)*hvVal*_vOffset;float2 wind = _windOffset * hVal*_SinTime.w;float roleDis = (1 - distance(o.worldPos.xz, rolePos.xz));float2 roleNor = (o.worldPos.xz - rolePos.xz)*step(0, roleDis)*(roleDis*_roleMul);float2 rolePosXZOffset = vVertexOffset + wind * (1 - roleNor) + roleNor * hVal;float rolePosYOffset = hVertexOffset - saturate(roleDis*_roleHOffset);o.pos = UnityObjectToClipPos(v.vertex+float3(rolePosXZOffset.x, rolePosYOffset, rolePosXZOffset.y));return o;}half4 frag (v2f i) : SV_Target{//要使用GPU Instancing必须加上这句UNITY_SETUP_INSTANCE_ID(i);// sample the texturehalf4 col = tex2D(_MainTex, i.uv);half3 finalCol = col.rgb * _topCol.rgb*i.hvVal.z + col.rgb;finalCol = clamp(finalCol*i.hvVal.x + _bottomCol * (1 - i.hvVal.x)*finalCol,  half3(0, 0, 0), half3(1, 1, 1));half alpha = col.a;clip(alpha - 0.5);return half4(finalCol,alpha);}ENDCG}/*//为了产生影子,加多一个pass,不过在大量渲染的情况下,不建议加阴影,性能实在差Pass {Name "ShadowCaster"Tags { "LightMode" = "ShadowCaster" }CGPROGRAM#pragma vertex vert#pragma fragment frag#include "UnityCG.cginc"struct appdata{float4 vertex : POSITION;float2 uv : TEXCOORD0;//要使用GPU Instancing必须加上这句UNITY_VERTEX_INPUT_INSTANCE_ID};struct v2f{float4 pos : SV_POSITION;float2 uv : TEXCOORD0;float3 centerPos : TEXCOORD1;float3 worldPos : TEXCOORD2;float3 hvVal : TEXCOORD3;//要使用GPU Instancing必须加上这句UNITY_VERTEX_INPUT_INSTANCE_ID};uniform float _hmin;uniform float _hmax;uniform float _vmin;uniform float _vmax;uniform float _vOffset;uniform float2 _windOffset;uniform float3 rolePos;uniform float _roleMul;uniform float _hOffset;uniform float _roleHOffset;uniform sampler2D _MainTex;uniform float4 _MainTex_ST;uniform float4 _topCol;uniform float4 _bottomCol;SamplerState sampler_MainTex;v2f vert(appdata v){v2f o;//要使用GPU Instancing必须加上这句UNITY_SETUP_INSTANCE_ID(v);o.uv = TRANSFORM_TEX(v.uv, _MainTex);o.centerPos = mul(unity_ObjectToWorld, float4(float3(0, 0, 0), 1)).xyz;o.worldPos = mul(unity_ObjectToWorld, v.vertex);float hVal = smoothstep(_hmin, _hmax, o.worldPos.y - o.centerPos.y);float vVal = smoothstep(_vmin, _vmax, distance(o.worldPos.xz, o.centerPos.xz));float hvVal = hVal * vVal;o.hvVal = float3(hVal, vVal, hvVal);float hVertexOffset = hvVal * _hOffset;float2 vVertexOffset = (o.worldPos.xz - o.centerPos.xz)*hvVal*_vOffset;float2 wind = _windOffset * hVal*_SinTime.w;float roleDis = (1 - distance(o.worldPos.xz, rolePos.xz));float2 roleNor = (o.worldPos.xz - rolePos.xz)*step(0, roleDis)*(roleDis*_roleMul);float2 rolePosXZOffset = vVertexOffset + wind * (1 - roleNor) + roleNor * hVal;float rolePosYOffset = hVertexOffset - saturate(roleDis*_roleHOffset);o.pos = UnityObjectToClipPos(v.vertex + float3(rolePosXZOffset.x, rolePosYOffset, rolePosXZOffset.y));return o;}half4 frag(v2f i) : SV_Target{//要使用GPU Instancing必须加上这句UNITY_SETUP_INSTANCE_ID(i);// sample the texturehalf4 col = tex2D(_MainTex, i.uv);clip(col.a - 0.5);return col;}ENDCG}*/}
}

这篇关于Unity大面积草地渲染——3、使用GPUInstancing渲染大面积的草的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/155708

相关文章

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图