机器学习-EM算法机器推广基于GaussianMixture函数对样本进行聚类-python实现

本文主要是介绍机器学习-EM算法机器推广基于GaussianMixture函数对样本进行聚类-python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1. EM算法概述
    • 2. 原理及数学表达
    • 3. 代码实现
    • 4. 总结

1. EM算法概述

  EM (Expectation Maximization) 算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计。EM算法的每次迭代由两步组成:E步,求期望(expectation);M步,求极大(maximization)。
  一般的对样本模型的建立,是从样本的观测数据入手,找出样本的模型参数。常用的方法是最大似然估计,即利用已知的样本观测结果来反推最有可能的导致这个结果的样本参数。
  但实际的样本观测中,可能存在未观测到的隐含数据,此时我们未知的有隐含数据和模型参数,无法直接用极大化对数似然函数得到模型分布的参数。
  对于未知的隐变量,我们先猜想隐变量,这是EM算法中的E步。基于已知的观测数据和猜想的隐变量,来极大化对数似然,求解我们的模型参数,这是EM算法的M布。当然,这个猜想的隐变量一般情况下是无法满足我们想要的结果。那么,我们基于刚刚求解的模型参数,继续猜想隐含数据,然后继续E步和M步,直到模型分布参数基本无变化,算法收敛,此时样本数据找到了合适的模型参数。
  举一个例子,我有一包糖果,为了公平,我要平分给我的妹妹。此时,我并不知道糖果的重量。于是乎,我随机把糖果分在两个袋子里。然后我掂量两个袋子的重量,感觉一个重一个轻,这就是EM算法的E步。那么我从重的袋子里抓一把糖果,放在轻的袋子里,此时,我并不知道我抓一把糖果有多重,放好之后,又掂量两个袋子的重量。这就是EM算法的M步。然后反复的分糖果,反复的掂量,直到我感觉两个袋子差不多重,那么此时,就达到我平分糖果的目的了。

2. 原理及数学表达

输入:观测变量数据 Y Y Y,隐变量数据 Z Z Z,联合分布 P ( Y , Z ∣ ) P(Y,Z| ) P(YZ),条件分布 P ( Z ∣ Y , ) P(Z|Y,) P(ZY,)
输出:模型参数 。

  1. 选择参数的初值 θ ( 0 ) \theta^{(0)} θ(0),开始迭代; 初值可以任意选择,但是EM算法对初值是敏感的,不同的初值可能得到不同的参数估计值。
  2. E步:记 θ ( i ) \theta^{(i)} θ(i)为第 i i i次迭代参数的估计值,在第i+1次迭代的E步,计算
    Q ( θ , θ ( i ) ) = E z ∣ log ⁡ P ( Y , Z ∣ θ ) ∣ Y , θ ( i ) ∣ ∑ Z log ⁡ P ( Y , Z ∣ θ ) P ( Z ∣ Y , θ ( i ) ) ∣ \begin{array}{c} Q\left(\theta, \theta^{(i)}\right)=E z|\log P(Y, Z \mid \theta)| Y, \theta^{(i)} \mid \\ \ \ \ \ \sum_{Z} \log P(Y, Z \mid \theta) P\left(Z \mid Y, \theta^{(i)}\right) \mid \end{array} Q(θ,θ(i))=EzlogP(Y,Zθ)Y,θ(i)    ZlogP(Y,Zθ)P(ZY,θ(i))
    这里, P ( Z ∣ Y , θ ( i ) ) P(Z|Y,\theta^{(i)} ) P(ZYθ(i))是在给定观测数据 Y Y Y和当前的参数估计 θ ( i ) \theta^{(i)} θ(i)下隐变量数据Z的条件概率分布。 Q函数是EM算法的核心。完全数据的对数似然函数 log ⁡ P ( Y , Z ∣ θ ) \log{P(Y,Z|\theta)} logP(Y,Zθ)关于在给定观测数据 Y Y Y和当前参数 θ ( i ) \theta^{(i)} θ(i)下对未观测数据Z的条件概率分布 P ( Z ∣ Y , θ ( i ) ) P(Z|Y,\theta^{(i)} ) P(ZYθ(i))的期望就是Q函数。
  3. M步:求 Q ( θ , θ ( i ) ) Q(\theta,\theta^{(i)}) Q(θ,θ(i))使极大化的 θ ( i ) \theta^{(i)} θ(i),确定第i+1次迭代的参数的 估计值 θ ( i + 1 ) = arg ⁡ max ⁡ θ Q ( θ , θ ( i ) ) \theta^{(i+1)}=\arg \max _{\theta} Q\left(\theta, \theta^{(i)}\right) θ(i+1)=argmaxθQ(θ,θ(i))
  4. 重复第2步和第3步,直到收敛。

3. 代码实现

  EM算法在高斯混合模型中的应用,用高斯混合模型对数据聚类,认为任意样本数据都可以由多个高斯分布函数去近似。
  通过make_blobs函数建立以[-1,-1], [0,0], [1,1], [2,2]为中心,[0.5, 0.3, 0.4, 0.3]为标准差的数据样本集。通过GaussianMixture函数对样本进行聚类,设置n_components=4,即四个高斯分布函数。得到结果可以看出,能对数据集很进行很好的聚类。

# 导入基本库
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
from sklearn.mixture import GaussianMixture# 生成样本特征和簇类别
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1,-1], [0,0], [1,1], [2,2]],cluster_std=[0.5, 0.3, 0.4, 0.3])
'''
X为样本特征,Y为样本簇类别
n_samples: 表示数据样本点个数
n_features: 表示数据的维度
centers: 产生数据的中心点
cluster_std: 数据集的标准差
'''##设置gmm函数
gmm = GaussianMixture(n_components=4, covariance_type='full').fit(X)
'''
n_components:混合高斯模型个数
covariance_type:通过EM算法估算参数时使用的协方差类型,默认是'full'
'''
##训练数据
y_pred = gmm.predict(X)##绘图
ax1 = plt.subplot(211)
ax1.set_title('original data')
plt.scatter(X[:, 0], X[:, 1],c='gray',marker='.')
ax2 = plt.subplot(212)
ax2.set_title('cluster data')
plt.scatter(X[:, 0], X[:, 1], c=y_pred,marker='.')
plt.show()

在这里插入图片描述

4. 总结

  当我们的样本数据都是可观测的数据是,那么对于给定的数据可以用极大似然估计,或者贝叶斯估计法来求解概率模型。但当样本数据存在隐变量时,那么隐变量很难由最大似然求解,这就需要EM算法来求解含有隐变量的概率模型参数。
  粗略的理解EM算法,在求解样本模型时,模型参数θ和未观测数据Z都是未知的,在每次迭代的过程中,一次固定一个变量,对另外的变量求基质。E步,固定θ,优化Q,M步,固定Q,优化θ。交替的将极值推向最大,求解极大似然估计。
  EM算法简单普适,但存在会收敛到局部最优的问题。

这篇关于机器学习-EM算法机器推广基于GaussianMixture函数对样本进行聚类-python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/154701

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

Java CompletableFuture如何实现超时功能

《JavaCompletableFuture如何实现超时功能》:本文主要介绍实现超时功能的基本思路以及CompletableFuture(之后简称CF)是如何通过代码实现超时功能的,需要的... 目录基本思路CompletableFuture 的实现1. 基本实现流程2. 静态条件分析3. 内存泄露 bug