向量空间模型(VSM)的余弦定理公式(cos)

2023-10-06 03:42

本文主要是介绍向量空间模型(VSM)的余弦定理公式(cos),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相信很多学习向量空间模型(Vector Space Model)的人都会被其中的余弦定理公式所迷惑..

 

因为一看到余弦定理,肯定会先想起初中时的那条最简单的公式cosA=a/c(邻边比斜边),见下图:

但是,初中那条公式是只适用于直角三角形的,而在非直角三角形中,余弦定理的公式是:

cosA=(c2 + b2 - a2)/2bc

不过这条公式也和向量空间模型中的余弦定理公式不沾边,迷惑..

 

引用吴军老师的数学之美系列的余弦定理和新闻的分类里面的一段:

-------------------引用开始分界线------------------------

假定三角形的三条边为 a, b 和 c,对应的三个角为 A, B 和 C,那么角 A 的余弦

如果我们将三角形的两边 b 和 c 看成是两个向量,那么上述公式等价于

其中分母表示两个向量 b 和 c 的长度,分子表示两个向量的内积。

举一个具体的例子,假如新闻 X 和新闻 Y 对应向量分别是x1,x2,...,x64000 和y1,y2,...,y64000,

那么它们夹角的余弦等于

 

-------------------引用完毕分界线------------------------

 

高中那条公式又怎么会等价于向量那条公式呢?

原来它从高中的平面几何跳跃到大学的线性代数的向量计算..

关于线性代数中的向量和向量空间,可以参考下面两个页面:

Egwald Mathematics: Linear Algebra

Linear Algebra: Direction Cosines

 

在线性代数的向量计算的余弦定理中,

* 分子是两个向量的点积(wiki),点积的定理和计算公式:

The dot product of two vectors a = [a1a2, … , an] and b = [b1b2, … , bn] is defined as:

 

点积(dot product),又叫内积,数量积..(Clotho注: product常见的是产品的意思,但在数学上是乘积的意思.)

 

* 分母是两个向量的长度相乘.这里的向量长度的计算公式也比较难理解.

假设是二维向量或者三维向量,可以抽象地理解为在直角坐标轴中的有向线段,如图:

d2 = x2 + y2   ->   d = sprt(x2 + y2)

 

d2 = x2 + y2 + z  ->   d = sprt(x2 + y2 + z2)

 

三维以上的维度很难用图来表示,但是再多维度的向量,也仍然可以用这条公式来计算:

dn2 = x12 + x22 + .. + xn  ->   dn = sprt(x12 + x22 + .. + xn2)

 

在文本相似度计算中,向量中的维度x1,x2..xn其实就是词项(term)的权重,一般就是词项的tf-idf值.

而这条看上去很抽象的公式,其实就是为了计算两篇文章的相似度.

 

文本相似度计算的处理流程是:

1.对所有文章进行分词

2.分词的同时计算各个词的tf值

3.所有文章分词完毕后计算idf值

4.生成每篇文章对应的n维向量(n是切分出来的词数,向量的项就是各个词的tf-idf值)

5.对文章的向量两篇两篇代入余弦定理公式计算,得出的cos值就是它们之间的相似度了

这篇关于向量空间模型(VSM)的余弦定理公式(cos)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/152757

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言