Covert Communication 与选择波束(毫米波,大规模MIMO,可重构全息表面)

本文主要是介绍Covert Communication 与选择波束(毫米波,大规模MIMO,可重构全息表面),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Covert Communication for Spatially Sparse mmWave Massive MIMO Channels

2023 TOC

abstract

隐蔽通信,也称为低检测概率通信,旨在为合法用户提供可靠的通信,并防止任何其他用户检测到合法通信的发生。出于下一代通信系统安全链路的强烈需求,我们研究了毫米波(mmWave)大规模多输入多输出(MIMO)混合波束成形的隐蔽通信。与现有的隐蔽通信研究一致,我们使用 Kullback-Leibler (KL) 散度和总变异 (TV) 距离作为隐蔽性度量。在两种隐蔽性措施下,对于块衰落信道,我们推导出有和没有人工噪声的隐蔽传输率。这些结果是通过优化发射功率和干扰功率来满足隐蔽性约束并最大化传输速率而获得的。具体来说,当允许人工噪声时,我们表明,在给定发射信号功率的情况下,存在实现隐蔽传输速率的最佳干扰功率。此外,我们提出了一种度量来衡量空间域中毫米波大规模 MIMO 信道的固有稀疏性,并研究其对隐蔽性度量和相应隐蔽传输速率的影响。我们的研究结果为采用毫米波大规模 MIMO 的实用隐蔽通信系统的设计提供了见解和基准。

Introduction

近年来,安全通信在无线服务和网络领域引起了广泛关注[1]。为了保证机密信号的安全,传统的方法是在应用层采用加密技术[2]。然而,当存在具有无限计算能力的对手时,使用加密算法的消息的安全性很容易受到攻击。由 Shannon [3] 首创的物理层安全性 (PLS) 提供了即使对手的计算能力不受限制也能实现完全安全通信的方法 [4]、[5]。因此,PLS是传统加密方法不可或缺的补充[6]。

在过去的几十年里,PLS,特别是窃听通道[7],[8],得到了广泛的研究[9],[10]。然而,基于窃听通道的安全方法仅保护合法通信的内容,这对于安全敏感的场景来说是不够的。为了解决这个问题,已经提出并研究了加性高斯白噪声(AWGN)信道的隐蔽通信或低检测概率(LPD)通信[11]、[12]、[13]。作为PLS的一种新方法,隐蔽通信可以保证合法用户之间在无线电静默场景下的可靠通信[13],满足下一代通信系统的强大安全需求[14]。在秘密通信中,名为 Alice 的合法发送者旨在向名为 Bob 的合法用户发送机密信号。名为 Willie 的对手尝试使用假设检验来检测 Alice 和 Bob 之间通信的发生 [11]。威利在测试中遇到了两种类型的错误。当威利错误地判定爱丽丝正在传输时,会发生误报;当威利错误地判定爱丽丝没有传输时,会发生漏检。这两个错误事件的概率分别用α和β表示。总变异 (TV) 距离与假设检验的贝叶斯误差概率密切相关,Kullback-Leibler (KL) 散度表征 NeymanPearson 设置中误报(或漏检)概率的指数衰减率 [15 ,第11章]。因此,除了两个错误概率(α,β)之外,TV距离[11]和KL散度[12]都被用作隐蔽性度量。

隐蔽通信在信息论界得到了广泛的研究,特别是对于单天线点对点信道[11],[12],[16],[17],[18],[19],[20] ,[21],[22],[23]。具体来说,Bash 等人。 [11] 发现了加性高斯白噪声 (AWGN) 通道上隐蔽通信的平方根定律,其中作者证明,对于任何 δ> 0 的情况,可以在 n 个通道中可靠地发送 O (√ n) 位,使得检测误差概率满足 α + β ≥ 1 − δ。 Wang 等人通过使用 KL 散度作为隐蔽性度量。 [12]推导了离散无记忆信道(DMC)和 AWGN 信道的隐秘通信中 O(√n) 项的精确系数。 Bloch [17] 发现,如果发送器和接收器共享 O ( √ n) 个密钥比特,则无论信道质量如何,都可以通过 n 个信道可靠地通信 O ( √ n) 个比特。对于所有三个隐蔽性度量——KL 散度、TV 距离和漏检概率,Tahmasbi 和 Bloch [20] 推导了二进制输入离散无记忆信道上隐蔽通信的一阶和二阶渐近。根据 KL 散度隐蔽性措施,Lee 等人。 [19]研究了具有状态的信道的隐蔽通信,并表明当足够长的密钥可用时,O(n)位可以在发送器处具有可用状态的信道上可靠且隐蔽地传输。随后,ZivariFard 等人。 [18]证明,当没有密钥可用时,可以实现具有状态的通道的隐蔽通信。对于多输入多输出 (MIMO) 通信,Bendary 等人。 [16]推导了KL散度隐蔽测度下MIMO AWGN信道的隐蔽容量,并研究了发射天线数量对隐蔽容量的影响。 Wang和Bloch[23]研究了电视距离测量下MIMO AWGN信道的隐蔽容量,并推导了隐蔽传输速率的显式公式。其他关于隐蔽通信的非详尽信息理论研究包括[21]、[22]。在[21]中,Zhang 等人。提出了一种隐蔽编码方案,其计算复杂度在块长度 n 中呈多项式增长,与之前分析中的指数增长相反。在[22]中,黄等人。使用顺序变化点检测框架而不是威利的二元假设检验来检测合法用户之间通信的发生并导出最大传输速率的界限。

基于信息论社会对隐蔽通信的研究,对各种场景下的隐蔽通信进行了研究。在本节的其余部分中,我们回顾了无线通信文献中有关隐蔽通信的现有工作,阐明了我们在现有工作之外的主要贡献,并说明了本文其余部分的组织。

隐蔽无线通信的相关工作

单天线系统的隐蔽无线通信已被广泛研究,例如[24]、[25]、[26]、[27]、[28]、[29]。具体来说,对于 AWGN 信道,根据 KL 散度隐蔽性测量,Yan 等人。 [24]推导了发送和接收的高斯信号的最大互信息。随后,受实际通信系统低延迟要求的推动,Yan 等人。 [25]研究了使用[30]中的有限块长度信息理论结果来最大化传输比特的最大信道数。马等人。 [26]将[25]的结果推广到多个对手的情况,并得出平均有效隐蔽吞吐量。与之前的作品不同,Zhang 等人。 [27]通过联合优化波束训练和数据传输过程来研究隐蔽毫米波(mmWave)通信。为了提高隐蔽通信的吞吐量,对于块衰落 AWGN 信道,Sobers 等人。 [28]考虑了干扰机的助手,其基于人工噪声(AN)技术发送干扰信号[31]来迷惑对手,并表明 O ( n ) O(n) O(n) 位可以在 n 个通道中秘密且可靠地传输。此外,郑等人。 [32]表明,当多个干扰器合作迷惑对手时,隐蔽吞吐量可以进一步提高。 Soltani 等人将 [28] 中的结果进一步推广到 N w N_w Nw 对手的情况。 [29],证明了 O ( min ⁡ ( n , m γ 2 n ) ) O\left(\min \left(n, m^{\frac{\gamma}{2}} \sqrt{n}\right)\right) O(min(n,m2γn )) 位可以在 n n n 个信道中隐蔽可靠地传输,其中 m m m γ \gamma γ 表示友方干扰机的泊松分布密度和路径损耗指数,分别。

对于多天线通信系统,已经针对半双工(HD)系统[33]、[34]、[35]和全双工(FD)系统[36]、[37]研究了干扰辅助隐蔽通信。 ,[38],[39]。在高清隐蔽通信中,使用单独的干扰器,Shmuel 等人。 [33]研究了当威利的信道状态信息(CSI)已知或未知时多天线干扰器的最优策略。 Jamali 和 Mahdavifar [34] 推导了发射机具有两个天线阵列时的最大隐蔽传输速率,其中一个天线阵列向合法接收器发送消息信号,另一个发送干扰信号以迷惑对手。 Ci等人。 [35] 研究了与多个合法接收器的秘密通信,其中发射器使用毫米波大规模 MIMO 混合波束成形发送干扰信号。在FD隐蔽通信中,干扰信号通常由接收机发送。具体来说,Shahzad 等人。 [36]优化了多天线接收器的干扰功率,以最大化接收器向对手发送干扰信号的情况下的隐蔽传输速率。由于对手的位置通常是未知的,陈等人。 [37]研究了多天线发射机和FD干扰接收机之间的隐蔽链路,并针对对手的不同位置优化了传输速率。当发射机、接收机和对手都配备多个天线时,基于检测错误概率隐蔽性度量,Wang 等人。 [39]推导出毫米波大规模 MIMO FD 系统的最佳隐蔽率。最后,孙等人。文献[38]研究了FD隐蔽中继通信,并对中继机密信号的发射功率和干扰进行了优化。此外,已经针对具有完美 CSI 或不完美 CSI 的多输入单输出 (MISO) 场景 [40]、[41] 研究了采用全数字波束成形技术的隐蔽通信。具体来说,Ma 等人。 [40]为常规和隐蔽用户提出了一种鲁棒的数字波束成形设计。吕等人。 [41]研究了中继辅助的多天线隐蔽通信。然而,上述全数字波束赋形方法并不能直接应用于毫米波大规模MIMO通信。这是因为,由于复杂的硬件实现、高功耗和高昂的成本,在毫米波大规模 MIMO 场景中为每个天线采用单独的射频链和数据转换器具有挑战性 [42]。

综上所述,尽管在有干扰和无干扰的各种无线场景中隐蔽通信已经得到了广泛的研究,但在具有信道空间稀疏性的毫米波大规模MIMO系统中的隐蔽通信研究却从未被探索过。具体来说,大多数关于隐蔽通信的研究都存在以下两个局限性之一。首先,大多数论文都是基于单输入单输出(SISO)、MISO 和 MIMO 信道。其次,大多数研究中的信道模型都是理论性的[11]、[12]、[17]、[20]、[21]、[24](例如AWGN、DMC),很难反映实际应用的全部性质。通信模型,因此无法直接为毫米波大规模 MIMO 系统中的实际隐蔽通信提供准确的基准。尽管基于窃听信道的毫米波大规模 MIMO 系统中的安全通信已在[43]、[44]、[45]和[46]中进行了探索,但大规模 MIMO 混合波束成形系统中隐蔽通信的研究非常有限[35] ],[39]。请注意,[35]中的所有合法用户和对手都只配备了单个天线,而我们设置中的发射器、接收器和对手都配备了多个天线,并应用了毫米波大规模 MIMO 混合波束成形架构。此外,[39]中的干扰信号是由FD(Full Duplex全双工)合法接收器发送的,并且对手没有使用大规模MIMO混合波束成形架构,这与我们的系统模型不同。更重要的是,没有推导干扰信号的最佳功率,也没有研究空间角域中的信道特性对隐蔽性能的影响。相比之下,最近对毫米波大规模 MIMO 信道建模的研究[47]表明稀疏性是固有的,信道空间稀疏是毫米波大规模 MIMO 信道的一个重要特性。因此,大规模 MIMO 系统中隐蔽通信的研究仍处于起步阶段。

主要贡献

为了加深对具有空间稀疏性的毫米波大规模 MIMO 信道上的隐蔽通信的理解,我们推导了不同隐蔽性度量下的隐蔽传输速率的公式。请注意,用于隐蔽通信的分析工具与[46]中基于窃听通道的安全通信的分析工具不同。具体来说,如果旨在使用[46]的体系结构进行隐蔽通信,其人工噪声方法虽然提高了窃听信道设置中的保密传输速率,但无法提高隐蔽传输速率。此外,[46]中的稀疏性度量取决于信噪比(SNR)水平,并且针对低和高SNR水平采用不同的公式。为了解决这些问题,我们提出了另一种采用混合波束成形的毫米波大规模 MIMO 的干扰辅助隐蔽传输方案,定义了一致的度量来评估毫米波大规模 MIMO 信道的固有稀疏性,并分析了稀疏性对隐蔽可实现传输速率的影响。沟通。我们的主要贡献如下。

在这里插入图片描述

这篇关于Covert Communication 与选择波束(毫米波,大规模MIMO,可重构全息表面)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/151983

相关文章

基于Python实现多语言朗读与单词选择测验

《基于Python实现多语言朗读与单词选择测验》在数字化教育日益普及的今天,开发一款能够支持多语言朗读和单词选择测验的程序,对于语言学习者来说无疑是一个巨大的福音,下面我们就来用Python实现一个这... 目录一、项目概述二、环境准备三、实现朗读功能四、实现单词选择测验五、创建图形用户界面六、运行程序七、

前端知识点之Javascript选择输入框confirm用法

《前端知识点之Javascript选择输入框confirm用法》:本文主要介绍JavaScript中的confirm方法的基本用法、功能特点、注意事项及常见用途,文中通过代码介绍的非常详细,对大家... 目录1. 基本用法2. 功能特点①阻塞行为:confirm 对话框会阻塞脚本的执行,直到用户作出选择。②

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

如何选择适合孤独症兄妹的学校?

在探索适合孤独症儿童教育的道路上,每一位家长都面临着前所未有的挑战与抉择。当这份责任落在拥有孤独症兄妹的家庭肩上时,选择一所能够同时满足两个孩子特殊需求的学校,更显得尤为关键。本文将探讨如何为这样的家庭做出明智的选择,并介绍星贝育园自闭症儿童寄宿制学校作为一个值得考虑的选项。 理解孤独症儿童的独特性 孤独症,这一复杂的神经发育障碍,影响着儿童的社交互动、沟通能力以及行为模式。对于拥有孤独症兄

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个?

跨平台系列 cross-plateform 跨平台应用程序-01-概览 cross-plateform 跨平台应用程序-02-有哪些主流技术栈? cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个? cross-plateform 跨平台应用程序-04-React Native 介绍 cross-plateform 跨平台应用程序-05-Flutte

如何选择SDR无线图传方案

在开源软件定义无线电(SDR)领域,有几个项目提供了无线图传的解决方案。以下是一些开源SDR无线图传方案: 1. **OpenHD**:这是一个远程高清数字图像传输的开源解决方案,它使用SDR技术来实现高清视频的无线传输。OpenHD项目提供了一个完整的工具链,包括发射器和接收器的硬件设计以及相应的软件。 2. **USRP(Universal Software Radio Periphera

《数据结构(C语言版)第二版》第八章-排序(8.3-交换排序、8.4-选择排序)

8.3 交换排序 8.3.1 冒泡排序 【算法特点】 (1) 稳定排序。 (2) 可用于链式存储结构。 (3) 移动记录次数较多,算法平均时间性能比直接插入排序差。当初始记录无序,n较大时, 此算法不宜采用。 #include <stdio.h>#include <stdlib.h>#define MAXSIZE 26typedef int KeyType;typedef char In