Redis KEYS查询大批量数据替代方案

2025-01-01 03:50

本文主要是介绍Redis KEYS查询大批量数据替代方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序...

前言

在使用 Redis 时,KEYS 命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞 Redis 服务。本文将介绍SCAN命令、有序集合、哈希表和RediSearch模块四种替代 KEYS 的高效方案,以应对大批量数据的查询和管理。根据本人实际使用情况,查询Redis大批量数据的情况下推荐使用SCAN命令较好。

KEYS命令问题背景

KEYS 命令会遍历整个键空间,对于包含大量键的 Redis 实例,这可能导致以下问题:
高延迟:执行时间较长,影响其他命令的响应速度。
阻塞 Redis:在单线程模型下,KEYS 会阻塞 Redis 服务器,导致其他操作无法及时处理。
内存消耗:返回所有匹配的键可能会占用大量内存。
因此,在生产环境中应尽量避免使用 KEYS 命令。

替代方案

1.使用 SCAN 命令

理论介绍

SCAN 是一个增量迭代器,可以分批逐步遍历键空间,避免一次性加载所有键。它支持游标(cursor)机制,允许用户通过多次调用来完成完整的遍历。

优点

非阻塞:不会阻塞 Redis 服务器,适合在线环境。
低资源消耗:每次只返回少量键,减少内存压力。

缺点

结果集不固定:SCAN 的结果集不是固定的,可能会有重复或遗漏的键,特别是在键频繁变化的情况下。
额外参数:需要合理设置 COUNT 参数以平衡遍历速度和资源消耗。

示例代码

/**
 * scan命令测试
 * @author senfel
 * @date 2024/12/26 11:34
 * @return void
 */
@Test
public void scan() {
    try (Jedis jedis = new Jedis("localhost", 6379)) {
        String cursor = "0";
        ScanParams scanParams = new ScanParams().match("sys_dict:*").count(100);
        do {
            ScanResult<String> scanResult = jedis.scan(cursor, scanParams);
            for (String key : scanResult.getResult()) {
                System.out.println("Found key: " + key);
            }
       python     cursor = scanResult.getCursor();
        } while (!cursor.equals("0"));
    }
}

2. 使用有序集合(Sorted Set)

理论介绍

如果需要对键进行排序或范围查询,可以考虑将键存储在有序集合中,并为每个键分配一个唯一的分数(score)。这样可以通过 ZRANGE 或 ZREVRANGE 等命令高效地获取指定范围内的键。

优点

高效查询:支持快速的范围查询和排序。
灵活性:可以根据业务需求调整分数规则。

缺点

额外开销:需要维护有序集合,增加了写入操作的复杂度。

示例代码

/**
 * sortSet
 * @author senfel
 * @date 2024/12/26 11:51
 * @return void
 */
@Test
public void sortSet() {
    try (Jedis jedis = new Jedis("localhost", 6379)) {
        // 添加键到有序集合
        for (int i = 0; i < 100; i++) {
            jedis.zadd("sorted_keys", System.currentTimeMillis(), "senfel"+i);
        }
        // 获取前 10 个键
        Set<String> keys = jedis.zrange("sorted_keys", 0, 9);
        for (String key : keys) {
            System.out.println("Key from sorted set: " + key);
        }
    }
}

3. 使用哈希(Hash)

理论介绍

如果键具有相似的结构或属于同一类目,可以将它们存储在一个哈希表中,每个字段代表一个键。这样可以通过 HGETALL 或 HSCAN 来批量获取相关键。

优点

集中管理:便于批量操作和维护。
高效访问:哈希表提供了 O(1) 的查找性能。

缺点

适用范围有限:适用于键具有相同前缀或分类的情况。

示例代码

/**
 * useHash
 * @author senfel
 * @date 2024/12/26 11:55
 * @return void
 */
@Test
public void useHash() {
    try (Jedis jedis = new Jedis("localhost", 6379)) {
        for (int i = 0; i < 100; i++) {
            // 添加键到哈希表
            jedis.hset("user_data", "name"+i, "senfel"+i);
        }
        // 获取所有键值对
        Map<String, String> userData = jedis.hgetAll("user_data");
        for (Map.Entry<String, String> entry : userData.entrySet()) {
            System.out.println("User data: " + entry.getKey() + " -> " + entry.getValue());
        }
    }
}

4. 使用 Redis 模块(如 RediSearch)

理论介绍

Redis 模块扩展了 Redis 的功能,其中 RediSearch 提供了全文搜索和索引功能,能够高效地管理和查询大量数据。它支持复杂的查询语法和过滤条件。

RediSearch安装推荐使用docker

docker run --name redisearch -p 16379:6379 -v redis-data:/data redis/redis-stack-server:latest

优点

强大查询能力:支持全文搜索、模糊匹配等高级查询。
高性能:优化的索引结构保证了高效的查询性能。

缺点

依赖外部模块:需要安装和配置 Redis 模块。
学习成本:API 和配置相对复杂,需要一定的时间熟悉。

maven依赖

<dependency>
    <groupId>com.redislabs<IGOky/groupId>
    <artifactId>jredisearch</artifactId>
    <version>2.0.0</version>
</dependency>

示例代码

/**
 * useRediSearch 未安装RediSearch未测试
 * @author senfel
 * @date 2024/12/26 12:26 
 * @return void
 */
@Test
public void useRediSearch() {
    Client client = Client.create("localhost", 6379).connect();
    // 创建索引并添加文档
    client.ftCreate("idx", Schema.newBuilder()
            .addField(new TexChina编程tField("title"))
            .addField(new TextField("content"))
            .build());
    client.ftAdd("idx", "doc1", 1.0, Document.newDocument()
            .addField("title", "Redis Search")
            .addField("content", "Learn how to use Redis Search"));
    // 查询文档
    SearchResult result = client.ftSearch("idx", new Query("Redis"));
    for (Document doc : result.documents()) {
        System.out.println("Found document: " + doc.getId());
    }
    client.close();
}

总结

综上所述,Redis 大批量数据解决方案目前有SCAN命令、有序集合、哈希表、RediSearch扩展模块。一般对于Redis 大批量键遍历可以使用非阻塞低资源消耗的SCAN 命令,对于需要排序或范围查询的场景则使用有序集合,python对于键具有相同前缀或分类的情况可以使用哈希表,如果需要全文搜索或复杂查询则可以使用高性能强大查询能力的RediSearch。

以上就是Redis KEYS查询大批量数据替代方案的详细内容,更多关于Redis KEYS数据替代方案的资料请关注php编程China编程(www.chinasem.cn)其它相关文章!

这篇关于Redis KEYS查询大批量数据替代方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1152879

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL中between and的基本用法、范围查询示例详解

《MySQL中betweenand的基本用法、范围查询示例详解》BETWEENAND操作符在MySQL中用于选择在两个值之间的数据,包括边界值,它支持数值和日期类型,示例展示了如何使用BETWEEN... 目录一、between and语法二、使用示例2.1、betwphpeen and数值查询2.2、be

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

MyBatis-Plus使用动态表名分表查询的实现

《MyBatis-Plus使用动态表名分表查询的实现》本文主要介绍了MyBatis-Plus使用动态表名分表查询,主要是动态修改表名的几种常见场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录1. 引入依赖2. myBATis-plus配置3. TenantContext 类:租户上下文

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

MySQL基本表查询操作汇总之单表查询+多表操作大全

《MySQL基本表查询操作汇总之单表查询+多表操作大全》本文全面介绍了MySQL单表查询与多表操作的关键技术,包括基本语法、高级查询、表别名使用、多表连接及子查询等,并提供了丰富的实例,感兴趣的朋友跟... 目录一、单表查询整合(一)通用模版展示(二)举例说明(三)注意事项(四)Mapper简单举例简单查询

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE