概率DP (由一道绿题引起的若干问题。目前为一些老题,蒟蒻的尝试学习1.0)

本文主要是介绍概率DP (由一道绿题引起的若干问题。目前为一些老题,蒟蒻的尝试学习1.0),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概率DP:
利用动态规划去解决 概率 期望 的题目。

概率DP 求概率(采用顺推)

从 初始状态推向结果,同一般的DP类似,只是经历了概率论知识的包装。
老题:
添加链接描述
题意:
袋子里有w只白鼠,b只黑鼠,A和B轮流从袋子里抓,谁先抓到白色谁就赢。A每次随机抓一只,B每次随机 抓完一只后 会有另外一只随机老鼠跑出来。如果两个人都没有抓到白色,那么B赢。A先抓,问A赢得概率。
w b 均在1e3以内。
思考:求A赢得概率,和当前袋子中 白鼠 黑鼠得数量有关系。 所以 这个要作为状态量。一般问什么,就设计什么状态。
状态:
dp[i][j]表示 当前 袋中有 i只白鼠 和j 只黑鼠时,A获胜得概率。
起点:dp[0][i]=0,dp[i][0]=1;
终点:dp[w][b]
转移:
1.先手拿到白鼠 dp[i][j]+=i/(i+j)
2.先手黑鼠,后手白鼠 f[i][j]+=0 这种情况不用处理
3.先手黑鼠,后手黑鼠,跑掉白鼠
f[i][j]+=j/(i+j)*(j-1)(i+j-1)i(i+j-2)dp[i-1][j-2]
4.先手黑鼠,后手黑鼠,跑黑鼠:dp[i][j]+=j/(i+j)
(j-1)/(i+j-1)
(j-2)/(i+j-2)*dp[i][j-3];

#include <bits/stdc++.h>
using namespace std;
void solve()
{int w, b;cin >> w >> b;vector<vector<double>> dp(w + 1, vector<double>(b + 1,0));// 定义 dp[i][j] 为 公主 在 i  个白 j 个 黑 的情况下// 获胜的概率for (int j = 1; j <= b; j++)dp[0][j] = 0;for (int i = 1; i <= w; i++)dp[i][0] = 1;for (int i = 1; i <= w; i++){for (int j = 1; j <= b; j++){dp[i][j] += 1.0*i / (i + j);if (j >= 3)dp[i][j] += 1.0*j / (i + j) * (j - 1) / (i + j - 1) * (j - 2) / (i + j - 2) * dp[i][j - 3];if (i >= 1 && j >= 2)dp[i][j] += 1.0*j / (i + j) * (j - 1) / (i + j - 1) * i / (i + j - 2) * dp[i - 1][j - 2];}}cout<<fixed<<setprecision(9)<<dp[w][b]<<"\n";
}
int main()
{std::cin.tie(nullptr)->sync_with_stdio(false);int t;t = 1;while (t--){solve();}return 0;
}

添加链接描述
有2^n 支球队比赛,每次和相邻的球队踢,两两淘汰,给定任意两支球队互相踢赢得概率。(2^n 的矩阵,表示两支球队之间踢赢的概率)求最后哪知球队最可能夺冠。

b 站上 一个视频很形象。
在这里插入图片描述

在这里插入图片描述
感觉这道题,就有难点的就是 这个 枚举 i 轮 j 队的对手 队伍。(队伍的编号从 0 开始)
这里使用的神秘的二进制。(啊啊啊,二进制,我是学不会了)
通过一些神秘的观察,大佬发现
枚举K 为队伍的编号
j>>(i-1) ^1 == k>>(i-1),
那么k 可以是 j 队I轮的对手。

#include <bits/stdc++.h>
using namespace std;
int read()
{int x = 0, f = 1;char ch = getchar();while (!isdigit(ch)){if (ch == '-')f = -1;ch = getchar();}while (isdigit(ch)){x = (x << 1) + (x << 3) + ch - '0';ch = getchar();}return x * f;
}
void solve()
{int lun;while (cin >> lun && lun != -1){int n = 1<<lun;//这个是 人数 vector<vector<double>> a(n, vector<double>(n));for (int i = 0; i < n; i++)for (int j = 0; j < n; j++)cin >> a[i][j];vector<vector<double>> dp(lun + 1, vector<double>(n));for (int i=0;i<n;i++)dp[0][i]=1;for (int i=1;i<=lun;i++){for (int j=0;j<n;j++){for(int k=0;k<n;k++){if(((j>>(i-1)) ^1)  == (k>>(i-1)))dp[i][j]+=dp[i-1][j]*dp[i-1][k]*a[j][k];}}}double mx=-1;int f=-1;for(int i=0;i<n;i++){if (dp[lun][i]>mx){mx=dp[lun][i],f=i;}}cout<<f+1<<"\n"; }}
int main()
{std::cin.tie(nullptr)->sync_with_stdio(false);int t;t = 1;// cin>>t;while (t--){solve();}return 0;
}

概率DP求期望(采用逆推)

由终止状态推到起始状态
一般直接将问题作为DP 的状态
luogu
题意:
一个有向无环图,没有重边和自环,起点为1,终点为n。所有点都可以到达终点。
当到达一个顶点,随机走一条边。求从起点走到终点所经过的路径总长度期望是多少。

状态: dp[u]代表点u 到终点n 的路径总长的期望
起点dp[n]=0;
答案是dp[1]
转移:
dp[u]+=(dp[v]+w)/out[u];
直接dfs ,记忆化搜索就可以。
每条边走一遍,每个节点走一遍。所以时间复杂度是
O(n+m)

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+5;vector<pair<int,double>>e[N];
void solve()
{int n,m;cin>>n>>m;int u,v,w;vector<int>out(n+1);while(m--){cin>>u>>v>>w;e[u].push_back(make_pair(v,w));out[u]++;}vector<double>dp(n+1);dp[n]=0;auto dfs=[&]( auto &&self  ,int u )->void{if (u==n||dp[u]!=0) return; for (int i=0;i<e[u].size();i++){int v=e[u][i].first;int w=e[u][i].second;self(self,v);dp[u]+=(dp[v]+w)/out[u];}};dfs(dfs,1);cout<<fixed<<setprecision(2)<<dp[1]<<"\n";
}
int main()
{int t;t=1;while(t--){solve();}return 0;
}

上面的做法是深搜去做的
我们也可以宽搜去做。
在图中的拓扑排序相当于宽搜。反向建图,使用拓扑排序。

#include <bits/stdc++.h>
using namespace std;const int N=1e5+5;
vector<pair<int,double>>e[N];int main()
{int n,m;cin>>n>>m;vector<double>dp(n+1);vector<int>in(n+1);vector<int>t(n+1);int u,v,w;while(m--){cin>>v>>u>>w;e[u].push_back({v,w});in[v]++;t[v]++;}queue<int>q;q.push(n);dp[n]=0;while(!q.empty()){int u=q.front();q.pop();for (int i=0;i<e[u].size();i++){int v=e[u][i].first;int w=e[u][i].second;dp[v]+=(dp[u]+w)/t[v];in[v]--;if (in[v]==0)q.push(v);}}cout<<fixed<<setprecision(2)<<dp[1]<<"\n";return 0;
}

这篇关于概率DP (由一道绿题引起的若干问题。目前为一些老题,蒟蒻的尝试学习1.0)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146800

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b