【动手学深度学习】04 数据操作 + 数据预处理(个人向笔记)

2024-09-08 00:04

本文主要是介绍【动手学深度学习】04 数据操作 + 数据预处理(个人向笔记),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据操作

  • N维数组是机器学习和神经网络的主要数据结构
  • 其中 2-d 矩阵中每一行表示每一行表示一个样本
    在这里插入图片描述
  • 当维度来到三维的时候则可以表示成一张图片,再加一维就可以变成多张图片,再加一维则可以变成一个视频
    在这里插入图片描述

访问元素

  • 冒号表示从冒号左边的元素到冒号右边的前一个元素(开区间),其中如果左边为空,那么表示从第一个开始,如果右边为空,那么表示访问到最后一个,如果两边都为空,则表示全部访问
  • 其中一行中我们指定了第一行:1,然后我们想要第一行的所有元素,所以我们把列冒号左右两边的元素都设置为空
  • 下图的列的标注有误,应该为:[:,1]
  • 其中还可以再添加一个冒号,表示访问的间隔,如最后一个示例所示:两个冒号后面的3表示下一次访问+3,两个冒号后面的2表示下一次访问+2
    在这里插入图片描述

数据操作实现

  • 张量(tensor): 一个数值组成的数组,这个数组可能有多个维度,如下图所示是一个一维的,长度为12的向量
  • 把变量放在jupyter的最后一行可以直接把它打印出来

在这里插入图片描述

  • 可以通过 shape 来访问张量的形状和张量中元素的总数,下图所示表示向量的维度为一,有 12 个元素
  • numel 为 number of element 表示总共有 12 个元素
    在这里插入图片描述
  • 可以通过 reshape 来更改张量的形状而不改变元素的个数
    在这里插入图片描述
  • zeros: 创造全 0 的张量
  • ones: 创造全1的张量
  • 2,3,4 可以理解成 2 个通道,3*4 的矩阵。也可以理解为 2 个,3 行,4 列
    在这里插入图片描述
  • 还可以传入列表来生成张量,需要把全部列表都包含在一个列表里面传入:
    在这里插入图片描述
  • 常见的标准运算符:+, -, *, /, ** 都可以被视为tensor间的按元素运算
    在这里插入图片描述
  • 可以用 cat 来进行指定维度的张量连接
    在这里插入图片描述
  • 可以通过逻辑运算符构建二元张量
    在这里插入图片描述
  • 可以对所有元素求和生成一个只有一个元素的张量
    在这里插入图片描述
  • 张量的广播机制: 一个在实际运用中很容易出错的地方。当两个张量的维度相同且两个张量都有一个是一维的,但是每一维的元素数量不同时,数量较少的那个张量会进行复制自己到和数量较大的数量相同后运算。
  • 下图第一维 b 的数量较少,于是 b 又额外复制了两个 [0. 1] 到第一维参与运算。而第二维 a 的数量较少,于是 a 的每个都复制了自身变成了 [0, 0], [1, 1], [2, 2]
    在这里插入图片描述
  • 我们可以指定索引来读取的修改张量:
    在这里插入图片描述
  • 张量操作的内存相关内容: 其中 id 是类似 c 语言指针的东西。下面的第一段代码表示直接用一个相同名字的变量来接收的话是会开辟新的内存的,即使它们名字一样。但是如果是指定所有元素[ : ]的话则不会
    在这里插入图片描述
  • 所以如果后续没有再使用 X 的话,可以用 X[ : ] 来进行操作来减少内存的开销:
    在这里插入图片描述
  • 可以用numpy的数组来构建张量:
    在这里插入图片描述
  • 可以将大小为 1 的张量转化为 python 中的标量:
    在这里插入图片描述

数据预处理实现

  • 课堂代码如下:
    在这里插入图片描述
  • 其中沐神并未解释前面几行代码的含义:问gpt结果如下
    在这里插入图片描述
    在这里插入图片描述
  • 可以用 pandas 里面的 read_csv 来读取csv文件:
    在这里插入图片描述
  • 可以用 iloc 来按索引取文件中的内容
  • 可以用 fillna 来填充数据中的 NaN 值,可以用 mean() 来取数据中的平均值,下面表示用均值填充
    在这里插入图片描述
  • 对于数据中的类别值或者离散值,我们可以将NaN变为一个类别:
    在这里插入图片描述
    在这里插入图片描述
  • 在经过上述处理后,input 和 output 都变成了数值,现在可以转化成 tensor 了
    在这里插入图片描述

Q&A

  • reshape 和 view 的区别:reshape 是浅拷贝,如果修改 reshape 后的张量,那么被 reshape 的张量也会被修改:
    在这里插入图片描述

这篇关于【动手学深度学习】04 数据操作 + 数据预处理(个人向笔记)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146544

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt