【2024全国大学生数学建模竞赛】B题 模型建立与求解(含代码与论文)

本文主要是介绍【2024全国大学生数学建模竞赛】B题 模型建立与求解(含代码与论文),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1问题重述
    • 1.1问题背景
    • 1.2研究意义
    • 1.3具体问题
  • 2总体分析
  • 3模型假设
  • 4符号说明(等四问全部更新完再写)
  • 5模型的建立与求解
    • 5.1问题一模型的建立与求解
      • 5.1.1问题的具体分析
      • 5.1.2模型的准备

目前B题第一问的详细求解过程以及对应论文部分已经完成!
- 晚上7-8点之前第二问完成
- 明天中文之前全部写完
在这里插入图片描述
按照提交论文的格式进行撰写!完整版请看文章最后!

1问题重述

1.1问题背景

某企业专注于生产一种在市场上广受欢迎的电子产品。这一产品的生产过程包括两个关键环节:采购和装配。这两个环节中,涉及到两种主要的零配件(我们称之为零配件1和零配件2)。这些零配件的质量直接决定了最终产品的质量。在生产过程中,任何一个零配件的次品都可能导致整个成品的次品率升高,从而影响产品的整体性能和可靠性。

因此,企业非常重视在零配件采购、装配和成品出厂的各个环节对产品质量进行严格的控制。然而,这种质量控制过程并不是没有代价的。它伴随着高昂的检测费用、拆解成本和不合格品的处理成本。如果处理不当,不仅会影响企业的生产效率,还可能带来信誉损失和客户的不满,进而影响企业的市场地位和品牌形象。

为了优化质量控制流程,企业希望通过科学的抽样检测方法,在最少的检测次数下确保零配件的质量,并在成品组装过程中根据具体情况做出最优决策。此外,企业还需应对成品检测后可能产生的不合格品拆解问题,尽可能减少不合格品的浪费及对企业声誉的影响。在这种背景下,建立一个综合考虑检测成本、拆解成本、市场损失的数学模型,对企业的生产过程进行全面优化显得尤为重要。

通过这样的数学模型,企业可以更精确地评估各个环节的成本和潜在风险,从而制定出更加科学合理的生产计划和质量控制策略。这不仅有助于降低生产成本,提高生产效率,还能确保最终产品的质量,满足市场需求,提升客户满意度。最终,企业将能够在激烈的市场竞争中保持优势,实现可持续发展。

1.2研究意义

本研究旨在通过数学模型优化生产质量控制和决策流程,具体包括:提升产品质量控制效率,减少检测次数和成本;降低生产成本浪费,提高生产效率;减少不合格产品影响,增强客户信任和忠诚度;帮助企业制定生产策略,降低次品率和市场损失,提高经济效益;提供涵盖全流程的系统化决策支持,优化运营管理。

1.3具体问题

  • 问题一:设计一个最少检测次数的抽样检测方案,以确定供应商提供的零配件次品率是否符合标称要求。
  • 问题二:根据零配件和成品的次品率,优化企业在生产过程中关于检测、装配和拆解的不合格品处理决策。
  • 问题三:在多工序和多零配件的生产流程中,制定最优的检测、装配和拆解决策方案,确保生产效率和质量控制。
  • 问题四:假设次品率通过抽样检测获得,重新设计生产过程中的决策方案。

2总体分析

首先,问题1要求建立一个抽样检测方案来确定是否接收供应商的零配件。企业需要在两种情况下作出决策:如果在95%的信度下,零配件的次品率超过了供应商声明的标称值(例如10%),则企业应拒收这批零配件;反之,在90%的信度下,如果次品率不超过标称值,则接收这批零配件。这一问题的解决涉及到统计假设检验的运用,需要确定合适的样本大小以减少检测成本,同时控制错误接受和错误拒绝的风险。可以通过二项分布或正态分布近似来估计抽样分布,从而设定合适的拒绝域和接受域。

问题2进一步深入到生产流程的多个决策点,包括是否对零配件和成品进行检测、如何处理检测出的不合格品、以及如何处理客户退回的不合格成品。这些决策需要基于成本效益分析和风险评估进行优化。例如,企业可以选择对所有零配件和成品进行全检,以确保质量,但这将大幅增加成本;或者只对抽样检测出的不合格品进行拆解和再利用,以减少成本。此外,对于客户退回的不合格品,企业需要决定是直接报废还是拆解后重新进入生产流程,这不仅关系到成本,还可能影响到企业的信誉和客户满意度。

问题3则是一个更为复杂的情景,涉及多道工序和多个零配件的生产决策。在这一问题中,企业需要针对每个工序和零配件的次品率、成本和其他相关数据,制定一套完整的生产和质量控制策略。这可能涉及到组合优化、多阶段决策问题的解决,如何在保证产品整体质量的同时,最大限度地减少生产成本和风险。例如,企业可能需要决定在某些工序中增加检测频率,或者选择在某些零配件上采取更为严格的质量控制措施。

最后,问题4要求在前述所有决策的基础上,考虑通过抽样检测得到的次品率数据的可靠性和准确性,并重新评估和调整生产决策。这一问题的核心是数据质量对决策的影响,需要企业在实际操作中对抽样方法、频率和数据处理方式进行优化,确保所得数据能够真实反映生产状况,以便更准确地进行成本和风险的评估。

综上所述,这四个问题不仅考验了参赛者在统计分析和假设检验方面的能力,还涉及到运筹学、决策分析和风险管理的知识。参赛者需要综合运用这些理论和方法,设计出既科学又实用的解决方案,帮助企业在复杂多变的生产环境中做出最优决策。

3模型假设

  • 假设一:所有零配件和生产工序之间相互独立,即每种零配件的质量和每个工序的效率不相互影响。这使得分析可以针对单独的零配件或工序进行,而不需要处理复杂的交互效应。
  • 假设二:在整个生产周期内,每种零配件或半成品的次品率保持恒定,不受生产批次或时间的变化影响。此外,所有相关的成本(包括购买单价、检测成本、装配成本和拆解费用)也保持固定,不受外部市场或经济因素的干扰。
  • 假设三:所有操作(如装配、检测、拆解)都能按照预定的最优流程高效执行,不存在操作效率损失。同时,生产设备始终处于良好状态,不考虑设备故障或维护需求,确保生产过程的连续性和稳定性。

4符号说明(等四问全部更新完再写)

5模型的建立与求解

5.1问题一模型的建立与求解

在这里插入图片描述

完成求解过程请看文章最后!

5.1.1问题的具体分析

问题一要求制定一个抽样检测计划,以决定是否接受一批零配件,基于供应商所声称的次品率。关键在于如何确定适当的样本量和决策标准,以最小化检测成本,同时确保决策的高可靠性。

在具体分析中,企业面临的主要挑战是在95%的置信水平下拒收次品率超过标称值的零配件,在90%的置信水平下接受次品率不超过标称值的零配件。这涉及到统计假设检验,特别是需要控制第一类错误(错误地拒绝良品)和第二类错误(错误地接受次品)的概率。

次品率的抽样检测通常采用二项分布进行建模,每个零配件要么合格,要么不合格,完全符合二项分布的特性。基于供应商提供的次品率标称值,可以设定零假设(次品率小于等于标称值)和备择假设(次品率大于标称值),并采用z检验或t检验等统计方法来决定是否拒收整批零配件。

在模型构建方面,首先需要定义这些假设,然后是确定样本量,这一步骤至关重要,以确保检验的功效,即最小化第一类和第二类错误的概率。这可以通过设定错误的容忍界限(例如α=5%,β=10%)和进行功效分析来实现。接着,需要设定决策规则,即根据样本次品率与临界值的比较结果来接受或拒绝零假设。

求解模型时,会计算在给定置信水平下的临界值,如果样本次品率大于此临界值,则拒绝零假设,否则接受。可以通过模拟抽样过程,计算样本次品率,并根据这些数据与临界值比较来确定是否接受或拒绝。这种方法可以为企业提供一个科学且经济有效的抽样检测方案,帮助企业在保证产品质量的同时控制相关成本。

5.1.2模型的准备

针对第一个问题,我们需要制定一个详细的抽样检测计划,以便通过尽可能少的检测次数来确定零配件的次品率是否超过了其标称值。为了实现这一目标,我们将采用假设检验的方法,并选择二项分布模型作为我们的统计模型。

具体来说,我们将首先设定一个零假设H,即零配件的次品率等于或低于其标称值。然后,我们将设定一个备择假设H1,即零配件的次品率超过了其标称值。接下来,我们将根据二项分布的特性,确定一个合适的样本量,以确保我们的检测结果具有统计学上的显著性。

在抽样过程中,我们将随机选择一定数量的零配件进行检测,并记录下其中的次品数量。根据这些数据,我们可以计算出次品率的实际观测值。然后,我们将使用二项分布的概率质量函数PMF来计算在零假设成立的情况下,观测到当前次品率或更极端情况的概率,即p值。

如果计算出的p值小于我们预先设定的显著性水平(例如0.05),则拒绝零假设,接受备择假设,认为零配件的次品率确实超过了标称值。反之,如果p值大于显著性水平,则无法拒绝零假设,认为没有足够的证据表明零配件的次品率超过了标称值。

通过这种方法,我们可以在保证统计学显著性的前提下,用最少的检测次数来判断零配件的次品率是否超标,从而提高检测效率并降低成本。
在这里插入图片描述
在这里插入图片描述

这篇关于【2024全国大学生数学建模竞赛】B题 模型建立与求解(含代码与论文)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143668

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=