SparkSQL在字节跳动的应用实践和优化实战

2024-09-06 21:32

本文主要是介绍SparkSQL在字节跳动的应用实践和优化实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来源:字节跳动白泉的分享
作者:大数据技术与架构整理

点击右侧关注,大数据开发领域最强公众号!

点击右侧关注,暴走大数据!



By  大数据技术与架构

场景描述: 面对大量复杂的数据分析需求,提供一套稳定、高效、便捷的企业级查询分析服务具有重大意义。本次演讲介绍了字节跳动基于SparkSQL建设大数据查询统一服务TQS(Toutiao Query Service)的一些实践以及在执行计划调优、数据读取剪枝、SQL兼容性等方面对SparkSQL引擎的一些优化。

关键词:SparkSQL优化 字节跳动

本文是根据来自字节跳动的分享整理而成。

作者来自字节跳动数据平台查询分析团队。

目标和能力

为公司内部提供 Hive 、 Spark - SQL 等 OLAP 查询引擎服务支持。
  • 提供全公司大数据查询的统一服务入口,支持丰富的API接口,覆盖Adhoc、ETL等SQL查询需求

  • 支持多引擎的智能路由、参数的动态优化

  • Spark-SQL/Hive引擎性能优化


针对SparkSQL,主要做了以下优化:
  1. 执行计划自动调优
        •基于AE的 ShuffledHashJoin调整
        •Leftjoinbuildleftmap技术
   2. 数据读取剪枝
        •Parquetlocalsort
        •BloomFilter&BitMap
        •Prewhere
   3. 一些其它优化
 

执行计划调优

  • 执行计划的自动调优:

Spark Adaptive Execution ( Intel®Software),简称SparkAE,总体思想是将sparksql生成的1个job中的所有stage单独执行,为每一个stage单独创建一个子job,子job执行完后收集该stage相关的统计信息(主要是数据量和记录数),并依据这些统计信息优化调整下游stage的执行计划。

目前SparkAE主要支持的功能:
(1)数据倾斜的调整
(2)小task的合并
(3)sortmerge-> broadcase
Spark 有3种join方式:Broadcastjoin、ShuffledHashJoin、SortMergeJoin
普通leftjoin无法build 左表

优化点:
在AE的框架下,根据shuffle数据量大小,自动调整join执行计划:SortMergeJoin调整为 ShuffledHashJoin•扩展支持left-join时将左表build成HashMap。

省去了大表join小表的情况下对shuffle数据的排序过程、join过程以HashMap完成,实现join提速。

  • SortMergeJoin调整为ShuffledHashJoin

640?wx_fmt=png

  • Leftjoin build left sidemap

1、初始化表A的一个匹配记录的映射表
目标:
对于Left-join的情况,可以对左表进行HashMapbuild。使得小左表leftjoin大右表的情况可以进行ShuffledHashJoin调整

难点:
Left-join语义:左表没有join成功的key,也需要输出

原理
在构建左表Map的时候,额外维持一个"是否已匹配"的映射表;在和右表join结束之后,把所有没有匹配到的key,用null进行join填充。
以 Aleft join B 为例:
640?wx_fmt=png

2、join过程中,匹配到的key置为1,没有匹配到的项不变(如key3)
640?wx_fmt=png

3、join结束后,没有匹配到的项,生成一个补充结果集R2
640?wx_fmt=png 640?wx_fmt=png

4.合并结果集R1和结果集R2,输出最终生成的join结果R。
640?wx_fmt=png
优化结果
  • 约95%左右的joinSQL有被调整成ShuffledHashJoin/BroadcastJoin

  • 被优化的SQL整体速度提升20%~30%

  • 整体执行时长缩短

640?wx_fmt=png

基于Parquet数据读取剪枝

以parquet格式数据为对象,在数据读取时进行适当的过滤剪枝,从而减少读取的数据量,加速查询速度
优化点:
  • LocalSort

  • BoomFilter

  • BitMap

  • Prewhere


基于Parquet数据读取剪枝:LocalSort
对parquet文件针对某个高频字段进行排序。从而实现读数据时RowGroup的过滤
目标:
  • 自动选择排序字段

  • 生成文件时自动排序

640?wx_fmt=png

Parquet文件读取原理:
(1)每个rowgroup的元信息里,都会记录自己包含的各个列的最大值和最小值
(2)读取时如何这个值不在最大值、最小值范围内,则跳过RowGroup
生成hive分区文件时,先读取metastore,获取它是否需要使用localsort,如果需要,选择它的高频列是哪个。

基于Parquet数据读取剪枝:BloomFilter&BitMap
640?wx_fmt=png
640?wx_fmt=png
640?wx_fmt=png
整体优化结果:
  • 命中索引平均性能提升 30%

  • 生成时间增加:10%

  • 空间开销增加:5%

  如何选取合适的列

640?wx_fmt=png

Local_sort &BloomFilter & BitMap 如何自动生效
640?wx_fmt=png

基于Parquet数据读取剪枝:Prewhere
基于列式存储各列分别存储、读取的特性•针对需要返回多列的SQL,先根据下推条件对RowId进行过滤、选取。再有跳过地读取其他列,从而减少无关IO和后续计算•谓词选择(简单、计算量小):in,=,<>,isnull,isnotnull
优化结果使得: 特定 SQL ( Project16 列, where条件 2 列) SQL 平均性能提升 20%

其他优化

  • Hive/SparkLoad分区Move文件优化:

通过调整staging目录位置,实现在Load过程中mv文件夹,替代逐个mv文件,从而减少与NameNode的交互次数
  • Spark生成文件合并

通过最后增加一个repartitionstage合并spark生成文件。
  • Vcore

对于CPU使用率低的场景,通过vcore技术使得一个yarn-core可以启动多个spark-core
  • Spark 访问hivemetastore 特定filter下推:

构造 get_partitions_by_filter实现 cast、substring等条件下推hivemetastore,从而减轻metastore返回数据量

运行期调优

在SQL执行前,通过统一的查询入口,对其进行基于代价的预估,选择合适的引擎和参数:
1.SQL分析
  • 抽取Hiveexplain逻辑,进行SQL语法正确性检查

  • 对SQL包含的算子、输入的数据量进行标注

2.自动引擎选择/自动参数优化
标注结果自动选择执行引擎:
  • 小SQL走SparkServer(省去yarn申请资源耗时)

  • 其他默认走Spark-Submit

标注结果选择不同运行参数:
  • Executor个数/内存

  • Overhead、堆外内存

调优后使得Adhoc30s以内SQL占比45%,Spark-Submit内存使用量平均减少20%。

欢迎点赞+收藏+转发朋友圈素质三连

640?wx_fmt=jpeg640?wx_fmt=jpeg

文章不错?点个【在看】吧! ?

这篇关于SparkSQL在字节跳动的应用实践和优化实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143176

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件