python 实现matrix exponentiation矩阵求幂算法

2024-09-06 12:44

本文主要是介绍python 实现matrix exponentiation矩阵求幂算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

matrix exponentiation矩阵求幂算法介绍

矩阵求幂算法(Matrix Exponentiation)是一种通过利用矩阵乘法的结合律来高效地计算矩阵的幂的算法。这种方法特别适用于在算法竞赛和计算机科学领域中解决需要快速计算矩阵幂的问题,如求解线性递推关系、图论中的路径计数等。

基本思想

矩阵求幂算法的基本思想类似于整数快速幂算法(快速幂算法),通过递归或迭代的方式将矩阵幂的计算过程分解为更小的问题。具体来说,通过利用矩阵乘法的结合律
( A B ) n = A n B n (AB)^n=A^nB^n (AB)n=AnBn(注意这里并不总是成立,但 A n B n A^nB^n AnBn在这里只是用于说明思路,实际中我们利用的是 ( A B ) n = A ( B A ) n − 1 B (AB)^n=A(BA)^{n−1}B (AB)n=A(BA)n1B当 𝑛>1且 A 和 B 可以交换时,但矩阵乘法通常不满足交换律,所以我们需要另寻他法),我们可以将 A n A^n An的计算问题转化为更小的幂次问题。

迭代方法

迭代方法通常更易于理解和实现。下面是一个迭代方法的伪代码示例:

function matrix_exponentiation(A, n):if n == 0:return I  # I 是单位矩阵if n == 1:return A# 将 n 分解为二进制result = Ibase = Awhile n > 0:if n % 2 == 1:  # 如果 n 是奇数result = result * basebase = base * base  # 将 base 平方n = n // 2return result

递归方法

递归方法虽然代码更简洁,但递归深度可能较大,对于非常大的 n 可能不是最佳选择。递归方法的思路是:
如果 n 是偶数,则 A n = ( A n 2 ) 2 A^n=(A^\frac{n}{2})^2 An=(A2n)2
如果 n 是奇数,则 A n = ( A n − 1 2 ) 2 A^n=(A^\frac{n-1}{2})^2 An=(A2n1)2

递归方法的伪代码示例:

function matrix_exponentiation_recursive(A, n):if n == 0:return I  # 单位矩阵if n % 2 == 0:half = matrix_exponentiation_recursive(A, n // 2)return half * halfelse:half = matrix_exponentiation_recursive(A, (n - 1) // 2)return A * (half * half)

注意事项
确保矩阵乘法运算的正确性,特别是矩阵乘法的维度匹配问题。
矩阵求幂算法的时间复杂度通常为 O(log n),其中 n 是幂次。
在实际应用中,可能需要使用模运算来避免整数溢出,这同样适用于矩阵中的元素(即矩阵的模幂)。
单位矩阵 I 的选择应与 A 的维度相匹配。

matrix exponentiation矩阵求幂算法python实现样例

矩阵的幂运算可以使用矩阵的乘法来实现。下面是一个示例代码实现:

import numpy as npdef matrix_exponentiation(matrix, n):# 检查输入矩阵的维度是否合法m, p = matrix.shapeif m != p:raise ValueError("输入矩阵必须是方阵")# 初始化结果矩阵为单位矩阵result = np.eye(m)# 计算矩阵的幂while n > 0:if n % 2 == 1:result = np.matmul(result, matrix)matrix = np.matmul(matrix, matrix)n //= 2return result

以上代码使用numpy库来处理矩阵运算。matrix_exponentiation函数接受一个方阵以及一个非负整数n作为输入,并返回输入矩阵的n次幂。

使用示例:

matrix = np.array([[1, 2], [3, 4]])
n = 3
result = matrix_exponentiation(matrix, n)
print(result)

输出:

[[ 37.  54.][ 81. 118.]]

以上实现基于矩阵的乘法,时间复杂度为 O(log(n))。

这篇关于python 实现matrix exponentiation矩阵求幂算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142038

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time