Leetcode 72. 编辑距离 动态规划 优化 C++实现

2024-09-06 06:36

本文主要是介绍Leetcode 72. 编辑距离 动态规划 优化 C++实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Leetcode 72.编辑距离

问题:给你两个单词 word1  word2, 请返回将 word1 转换成 word2 所使用的最少操作数  。

你可以对一个单词进行如下三种操作:插入一个字符,删除一个字符,替换一个字符。

算法1:递归搜索 + 保存计算结果 = 记忆化搜索

        创建 memo 数组,并赋初始值为 -1,表示还没有被计算过。

        进入 dfs 函数。引用 memo 数组,如果这个字母已经被计算过了就 return memo 的值。有四种情况,两个字母相等,这个位置就不用操作,向前继续递归;如果不相等,可以插入字母、删除字母、替换字母,取操作数最小的一个。

        例如在 word1 中插入字母,那么这个位置的问题就解决了,这个时候要让 word2 的指针前移,继续递归。如果在 word1 中删除字母,那么就要将 word1 的指针前移。如果替换字母,就让 word1 word2 的指针同时前移。

        dfs 中前两行代码表示的意思是,如果在递归过程中出现了 i 或者 j 小于 0 的情况,即 word1 或者 word2 已经遍历完了,那么另一个没有被遍历完的 word 剩余的字母个数就是 j + 1 或者 i + 1 ,这个时候直接 return j + 1 或者 i + 1 即可。

代码:

class Solution {
public:int minDistance(string word1, string word2) {int n = word1.length(), m = word2.length();vector<vector<int>> memo(n, vector<int>(m, -1)); // -1 表示还没有计算过auto dfs = [&](auto&& dfs, int i, int j) -> int {if (i < 0)    return j + 1;if (j < 0)    return i + 1;int& res = memo[i][j]; // 注意这里是引用if (res != -1)    return res; // 之前算过了if (word1[i] == word2[j])   return res = dfs(dfs, i - 1, j - 1);return res = min(min(dfs(dfs, i - 1, j), dfs(dfs, i, j - 1)), dfs(dfs, i - 1, j - 1)) + 1;};return dfs(dfs, n - 1, m - 1); // 递归入口}
};

算法2:1:1 翻译成递推

        创建二维数组 dp ,并赋初始值 0 。初始化第 0 行第 0 列,先赋最大值,即当前位置可能出现的最大值。

        开始循环递推,如果 word1 当前字母与 word2 当前字母相等,则 这个位置的操作数 dp 就等于 dp 前一个格子的值。

代码:

class Solution {
public:int minDistance(string word1, string word2) {int n = word1.length(), m = word2.length();vector<vector<int>> dp(n + 1,vector<int>(m + 1));for(int j = 0;j <= m;j++)   dp[0][j] = j; // 初始化第0行for(int i = 0; i < n; i++){dp[i + 1][0] = i + 1; // 初始化第0列for(int j = 0;j < m;j++)dp[i + 1][j + 1] = word1[i] == word2[j] ? dp[i][j] : min(min(dp[i][j],dp[i + 1][j]),dp[i][j + 1]) + 1;}return dp[n][m];}
};

算法3:空间优化:两个数组(滚动数组)

        通过 算法2 可知,行列表我们只会用到 2 行,每次递推只会取它的上一个格子的值,所以可以利用循环数组,来有效降低空间复杂度。

代码:

class Solution {
public:int minDistance(string word1, string word2) {int n = word1.length(),m = word2.length();vector<vector<int>> dp(2,vector<int>(m + 1));for(int j = 0;j <= m;j++)   dp[0][j] = j;for(int i = 0;i < n;i++){dp[(i + 1) % 2][0] = i + 1;for(int j = 0;j < m;j++)     dp[(i + 1) % 2][j + 1] = word1[i] == word2[j] ? dp[i % 2][j] : min(min(dp[i % 2][j],dp[(i + 1) % 2][j]),dp[i % 2][j + 1]) + 1;}return dp[n % 2][m];}
};

算法3:空间优化:一个数组

        创建一维数组 dp 并赋初始值。

        dp [ 0 ] 相当于原来的 dp [ 0 ] [ ] ,通过内层循环每循环一次就通过 dp [ 0 ] 自增来实现 + 1

        pre 相当于 dp [ i + 1 ] [ j ] ;

        没更新的 dp[ j + 1] 相当于 dp [ i ] [ j + 1] ;

        dp[ j ] 相当于 dp [ i ] [ j ];

        更新后的 dp[ j + 1] 相当于 dp [ i + 1] [ j + 1]

代码:

class Solution {
public:int minDistance(string word1, string word2) {int m = word2.length();vector<int> dp(m + 1);for(int j = 0;j <= m;j++)   dp[j] = j; // iota(dp.begin(), dp.end(), 0);for(char x : word1){int pre = dp[0];dp[0]++; // 对应二维数组方法时行数向下移,即 dp[i+1][0] = i+1for(int j = 0;j < m;j++){int temp = dp[j + 1];dp[j + 1] = x == word2[j] ? pre : min(min(dp[j + 1],dp[j]),pre) + 1;pre = temp;}}return dp[m];}
};

这篇关于Leetcode 72. 编辑距离 动态规划 优化 C++实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141277

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表