Leetcode 72. 编辑距离 动态规划 优化 C++实现

2024-09-06 06:36

本文主要是介绍Leetcode 72. 编辑距离 动态规划 优化 C++实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Leetcode 72.编辑距离

问题:给你两个单词 word1  word2, 请返回将 word1 转换成 word2 所使用的最少操作数  。

你可以对一个单词进行如下三种操作:插入一个字符,删除一个字符,替换一个字符。

算法1:递归搜索 + 保存计算结果 = 记忆化搜索

        创建 memo 数组,并赋初始值为 -1,表示还没有被计算过。

        进入 dfs 函数。引用 memo 数组,如果这个字母已经被计算过了就 return memo 的值。有四种情况,两个字母相等,这个位置就不用操作,向前继续递归;如果不相等,可以插入字母、删除字母、替换字母,取操作数最小的一个。

        例如在 word1 中插入字母,那么这个位置的问题就解决了,这个时候要让 word2 的指针前移,继续递归。如果在 word1 中删除字母,那么就要将 word1 的指针前移。如果替换字母,就让 word1 word2 的指针同时前移。

        dfs 中前两行代码表示的意思是,如果在递归过程中出现了 i 或者 j 小于 0 的情况,即 word1 或者 word2 已经遍历完了,那么另一个没有被遍历完的 word 剩余的字母个数就是 j + 1 或者 i + 1 ,这个时候直接 return j + 1 或者 i + 1 即可。

代码:

class Solution {
public:int minDistance(string word1, string word2) {int n = word1.length(), m = word2.length();vector<vector<int>> memo(n, vector<int>(m, -1)); // -1 表示还没有计算过auto dfs = [&](auto&& dfs, int i, int j) -> int {if (i < 0)    return j + 1;if (j < 0)    return i + 1;int& res = memo[i][j]; // 注意这里是引用if (res != -1)    return res; // 之前算过了if (word1[i] == word2[j])   return res = dfs(dfs, i - 1, j - 1);return res = min(min(dfs(dfs, i - 1, j), dfs(dfs, i, j - 1)), dfs(dfs, i - 1, j - 1)) + 1;};return dfs(dfs, n - 1, m - 1); // 递归入口}
};

算法2:1:1 翻译成递推

        创建二维数组 dp ,并赋初始值 0 。初始化第 0 行第 0 列,先赋最大值,即当前位置可能出现的最大值。

        开始循环递推,如果 word1 当前字母与 word2 当前字母相等,则 这个位置的操作数 dp 就等于 dp 前一个格子的值。

代码:

class Solution {
public:int minDistance(string word1, string word2) {int n = word1.length(), m = word2.length();vector<vector<int>> dp(n + 1,vector<int>(m + 1));for(int j = 0;j <= m;j++)   dp[0][j] = j; // 初始化第0行for(int i = 0; i < n; i++){dp[i + 1][0] = i + 1; // 初始化第0列for(int j = 0;j < m;j++)dp[i + 1][j + 1] = word1[i] == word2[j] ? dp[i][j] : min(min(dp[i][j],dp[i + 1][j]),dp[i][j + 1]) + 1;}return dp[n][m];}
};

算法3:空间优化:两个数组(滚动数组)

        通过 算法2 可知,行列表我们只会用到 2 行,每次递推只会取它的上一个格子的值,所以可以利用循环数组,来有效降低空间复杂度。

代码:

class Solution {
public:int minDistance(string word1, string word2) {int n = word1.length(),m = word2.length();vector<vector<int>> dp(2,vector<int>(m + 1));for(int j = 0;j <= m;j++)   dp[0][j] = j;for(int i = 0;i < n;i++){dp[(i + 1) % 2][0] = i + 1;for(int j = 0;j < m;j++)     dp[(i + 1) % 2][j + 1] = word1[i] == word2[j] ? dp[i % 2][j] : min(min(dp[i % 2][j],dp[(i + 1) % 2][j]),dp[i % 2][j + 1]) + 1;}return dp[n % 2][m];}
};

算法3:空间优化:一个数组

        创建一维数组 dp 并赋初始值。

        dp [ 0 ] 相当于原来的 dp [ 0 ] [ ] ,通过内层循环每循环一次就通过 dp [ 0 ] 自增来实现 + 1

        pre 相当于 dp [ i + 1 ] [ j ] ;

        没更新的 dp[ j + 1] 相当于 dp [ i ] [ j + 1] ;

        dp[ j ] 相当于 dp [ i ] [ j ];

        更新后的 dp[ j + 1] 相当于 dp [ i + 1] [ j + 1]

代码:

class Solution {
public:int minDistance(string word1, string word2) {int m = word2.length();vector<int> dp(m + 1);for(int j = 0;j <= m;j++)   dp[j] = j; // iota(dp.begin(), dp.end(), 0);for(char x : word1){int pre = dp[0];dp[0]++; // 对应二维数组方法时行数向下移,即 dp[i+1][0] = i+1for(int j = 0;j < m;j++){int temp = dp[j + 1];dp[j + 1] = x == word2[j] ? pre : min(min(dp[j + 1],dp[j]),pre) + 1;pre = temp;}}return dp[m];}
};

这篇关于Leetcode 72. 编辑距离 动态规划 优化 C++实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141277

相关文章

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.