动态规划DP--背包问题

2024-09-05 19:36
文章标签 动态 规划 问题 dp 背包

本文主要是介绍动态规划DP--背包问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 0-1背包问题 -- 问题定义
    • 动态规划解法
    • 代码
    • 题目:分割等和子集
    • 题解

0-1背包问题 – 问题定义

在 0-1 背包问题中,给定一个背包的最大容量 W,以及 n 个物品,每个物品有两个属性:

  • 重量:第 i 个物品的重量为 wt[i]
  • 价值:第 i 个物品的价值为 val[i]

目标是选择若干个物品装入背包,使得在不超过背包最大容量 W 的前提下,装入背包的物品的总价值最大

注意:0-1 背包中的 “0-1” 指的是每个物品只能被选取一次(即要么选择该物品,要么不选,不存在把物品拆一半放入背包)。

这个0-1背包问题很经典。详情可以买本labuladong的算法笔记这本书看看,或者去网站看。

动态规划解法

背包问题无非就是状态 + 选择,状态转移方程比较特殊。

第一步:明确状态+选择
状态:只要给几个物品一个背包的容量限制,就形成了一个背包问题呀。所以状态有两个,就是背包的容量可选择的物品

选择:装进背包 or 不装进背包

框架:

for 状态1 in 状态1的所有取值:for 状态2 in 状态2的所有取值:for ...dp[状态1][状态2][...] = 择优(选择1,选择2...)

第二步:要明确 dp 数组的定义

  1. dp[i][w] 的定义

    • dp[i][w] 表示在考虑前 i 个物品时,当前背包容量为 w 的情况下可以获得的最大价值。
    • 注意:i 是从 1 开始计数的,意味着 i 对应的是第 i-1 个物品。
  2. 两种情况的状态转移

    • 如果不选第 i 个物品

      • 那么当前背包的最大价值等于不考虑第 i 个物品时的最大价值,即 dp[i][w] = dp[i-1][w]。这个值继承了前 i-1 个物品在背包容量为 w 时的最大价值。
    • 如果选第 i 个物品

      • 你可以将第 i 个物品装入背包,前提是当前背包的容量 w 要大于等于该物品的重量 wt[i-1]
      • 在这种情况下,当前物品的总价值应该等于第 i-1 个物品在容量为 w - wt[i-1] 时的最大价值,再加上该物品的价值 val[i-1]
      • 公式为:dp[i][w] = val[i-1] + dp[i-1][w - wt[i-1]]
// ①定义状态
int[][] dp[N+1][W+1]
// ②初始化状态 因为没有物品或者背包没有空间的时候,能装的最大价值就是 0
dp[0][..] = 0
dp[..][0] = 0
// ③状态转移方程
for i in [1..N]:for w in [1..W]:dp[i][w] = max(把物品 i 装进背包,不把物品 i 装进背包)
return dp[N][W]

代码

int knapsack(int W, int N, int[] wt, int[] val) {int N == wt.length;// 定义状态 dp[i][w] 表示: 对于前 i 个物品(从 1 开始计数),当前背包的容量为 w 时,这种情况下可以装下的最大价值是 dp[i][w]int[][] dp = new int[N + 1][W + 1];for (int i = 1; i <= N; i++) {for (int w = 1; w <= W; w++) {if (w - wt[i - 1] < 0) {// 这种情况下只能选择不装入背包dp[i][w] = dp[i - 1][w];} else {// 装入或者不装入背包,择优dp[i][w] = Math.max(dp[i - 1][w - wt[i-1]] + val[i-1], dp[i - 1][w]);}}}return dp[N][W];
}

题目:分割等和子集

原题链接: 分割等和子集
在这里插入图片描述

题解

方法1:

  • dp[i][j] = dp[i-1][j] || dp[i-1][j-nums[i-1]]:只要有一种情况成立,dp[i][j] 就为 true。即:
    • 要么不选第 i 个数(dp[i-1][j]true),则前 i-1 个数已经能够组成和为 j
    • 要么选择第 i 个数(dp[i-1][j-nums[i-1]]true),则前 i-1 个数能组成和为 j - nums[i-1],加上 nums[i-1] 就可以使总和为 j
 public boolean canPartition(int[] nums) {int sum = 0;for (int num : nums) sum += num;// 和为奇数时,不可能划分成两个和相等的集合if (sum % 2 != 0) return false;int target = sum / 2;// ①定义状态  dp[i][j] 表示前i个数中能否选出若干个  使得和为 j(j为背包容量)  则为true  否则falseboolean[][] dp = new boolean[nums.length + 1][target + 1];// ②初始化状态for (int i = 0; i <= nums.length; i++)dp[i][0] = true; // 背包容量为 0 时  不选任何物品就满足// ③状态转移for (int i = 1; i <= nums.length; i++) {for (int j = 1; j <= target; j++) {if (j - nums[i - 1] < 0) {// 背包容量不足,不能装入第 i 个物品dp[i][j] = dp[i - 1][j];} else {// 装入或不装入背包dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i - 1]];}}}return dp[nums.length][target];}

这段代码是一个典型的0-1 背包问题的解法,问题是:能否从数组 nums 中找到若干个数,使它们的和等于 target(即总和的一半)。其中 dp[i][j] 表示前 i 个数能否选出若干个数,使它们的和恰好为 j。现在解释这一行代码:

dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i - 1]];

方法2:
在每次状态转移时,dp[i][j] 只依赖于上一行的状态 dp[i-1][j] 和 dp[i-1][j - nums[i-1]],所以可以将其优化为一维数组 dp[j],从而减少空间复杂度。

在遍历数组时,我们从后向前更新 dp 数组。这样做可以避免同一轮中重复使用同一个元素,即确保每个元素只能使用一次。

public boolean canPartition(int[] nums) {// 计算数组总和int sum = 0;for (int num : nums) {sum += num;}// 如果总和为奇数,无法分成两个子集if (sum % 2 != 0) return false;// 目标和是总和的一半int target = sum / 2;// ①定义状态  dp[i] 表示是否可以选出若干个元素,使得和为 iboolean[] dp = new boolean[target + 1];// ②初始化状态dp[0] = true;// ③状态转移for (int i = 0; i < nums.length; i++) {for (int j = target; j >= 0; j--) {if (j - nums[i] >= 0) {dp[j] = dp[j] | dp[j - nums[i]];}}}return dp[target];
}

❤觉得有用的可以留个关注~~~❤

这篇关于动态规划DP--背包问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139868

相关文章

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如