高斯混合模型(GMM)的EM算法实现

2024-09-05 10:38

本文主要是介绍高斯混合模型(GMM)的EM算法实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明。本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。

  1. GMM模型:
    每个 GMM 由 K 个 Gaussian 分布组成,每个 Gaussian 称为一个“Component”,这些 Component 线性加成在一起就组成了 GMM 的概率密度函数:

根据上面的式子,如果我们要从 GMM 的分布中随机地取一个点的话,实际上可以分为两步:首先随机地在这 K个Gaussian Component 之中选一个,每个 Component 被选中的概率实际上就是它的系数 pi(k) ,选中了 Component 之后,再单独地考虑从这个 Component 的分布中选取一个点就可以了──这里已经回到了普通的 Gaussian 分布,转化为了已知的问题。

那么如何用 GMM 来做 clustering 呢?其实很简单,现在我们有了数据,假定它们是由 GMM 生成出来的,那么我们只要根据数据推出 GMM 的概率分布来就可以了,然后 GMM 的 K 个 Component 实际上就对应了 K 个 cluster 了。根据数据来推算概率密度通常被称作 density estimation ,特别地,当我们在已知(或假定)了概率密度函数的形式,而要估计其中的参数的过程被称作“参数估计”。

  1. 参数与似然函数:

现在假设我们有 N 个数据点,并假设它们服从某个分布(记作 p(x) ),现在要确定里面的一些参数的值,例如,在 GMM 中,我们就需要确定 影响因子pi(k)、各类均值pMiu(k) 和 各类协方差pSigma(k) 这些参数。 我们的想法是,找到这样一组参数,它所确定的概率分布生成这些给定的数据点的概率最大,而这个概率实际上就等于 ,我们把这个乘积称作似然函数 (Likelihood Function)。通常单个点的概率都很小,许多很小的数字相乘起来在计算机里很容易造成浮点数下溢,因此我们通常会对其取对数,把乘积变成加和 \sum_{i=1}^N \log p(x_i),得到 log-likelihood function 。接下来我们只要将这个函数最大化(通常的做法是求导并令导数等于零,然后解方程),亦即找到这样一组参数值,它让似然函数取得最大值,我们就认为这是最合适的参数,这样就完成了参数估计的过程。

下面让我们来看一看 GMM 的 log-likelihood function :

由于在对数函数里面又有加和,我们没法直接用求导解方程的办法直接求得最大值。为了解决这个问题,我们采取之前从 GMM 中随机选点的办法:分成两步,实际上也就类似于K-means 的两步。

  1. 算法流程:

  2. 估计数据由每个 Component 生成的概率(并不是每个 Component 被选中的概率):对于每个数据 x_i 来说,它由第 k 个 Component 生成的概率为

其中N(xi | μk,Σk)就是后验概率。

  1. 通过极大似然估计可以通过求到令参数=0得到参数pMiu,pSigma的值。具体请见这篇文章第三部分。

其中 N_k = \sum_{i=1}^N \gamma(i, k) ,并且 \pi_k 也顺理成章地可以估计为 N_k/N 。

  1. 重复迭代前面两步,直到似然函数的值收敛为止。

  2. matlab实现GMM聚类代码与解释:

说明:fea为训练样本数据,gnd为样本标号。算法中的思想和上面写的一模一样,在最后的判断accuracy方面,由于聚类和分类不同,只是得到一些 cluster ,而并不知道这些 cluster 应该被打上什么标签,或者说。由于我们的目的是衡量聚类算法的 performance ,因此直接假定这一步能实现最优的对应关系,将每个 cluster 对应到一类上去。一种办法是枚举所有可能的情况并选出最优解,另外,对于这样的问题,我们还可以用 Hungarian algorithm 来求解。具体的Hungarian代码我放在了资源里,调用方法已经写在下面函数中了。

注意:资源里我放的是Kmeans的代码,大家下载的时候只要用bestMap.m等几个文件就好~

  1. gmm.m,最核心的函数,进行模型与参数确定。
    [cpp] view plaincopy
    function varargout = gmm(X, K_or_centroids)
    % ============================================================
    % Expectation-Maximization iteration implementation of
    % Gaussian Mixture Model.
    %
    % PX = GMM(X, K_OR_CENTROIDS)
    % [PX MODEL] = GMM(X, K_OR_CENTROIDS)
    %
    % - X: N-by-D data matrix.
    % - K_OR_CENTROIDS: either K indicating the number of
    % components or a K-by-D matrix indicating the
    % choosing of the initial K centroids.
    %
    % - PX: N-by-K matrix indicating the probability of each
    % component generating each point.
    % - MODEL: a structure containing the parameters for a GMM:
    % MODEL.Miu: a K-by-D matrix.
    % MODEL.Sigma: a D-by-D-by-K matrix.
    % MODEL.Pi: a 1-by-K vector.
    % ============================================================
    % @SourceCode Author: Pluskid (http://blog.pluskid.org)
    % @Appended by : Sophia_qing (http://blog.csdn.net/abcjennifer)

%% Generate Initial Centroids
threshold = 1e-15;
[N, D] = size(X);

if isscalar(K_or_centroids) %if K_or_centroid is a 1*1 number  K = K_or_centroids;  Rn_index = randperm(N); %random index N samples  centroids = X(Rn_index(1:K), :); %generate K random centroid  
else % K_or_centroid is a initial K centroid  K = size(K_or_centroids, 1);   centroids = K_or_centroids;  
end  %% initial values  
[pMiu pPi pSigma] = init_params();  Lprev = -inf; %上一次聚类的误差  %% EM Algorithm  
while true  %% Estimation Step  Px = calc_prob();  % new value for pGamma(N*k), pGamma(i,k) = Xi由第k个Gaussian生成的概率  % 或者说xi中有pGamma(i,k)是由第k个Gaussian生成的  pGamma = Px .* repmat(pPi, N, 1); %分子 = pi(k) * N(xi | pMiu(k), pSigma(k))  pGamma = pGamma ./ repmat(sum(pGamma, 2), 1, K); %分母 = pi(j) * N(xi | pMiu(j), pSigma(j))对所有j求和  %% Maximization Step - through Maximize likelihood Estimation  Nk = sum(pGamma, 1); %Nk(1*k) = 第k个高斯生成每个样本的概率的和,所有Nk的总和为N。  % update pMiu  pMiu = diag(1./Nk) * pGamma' * X; %update pMiu through MLE(通过令导数 = 0得到)  pPi = Nk/N;  % update k个 pSigma  for kk = 1:K   Xshift = X-repmat(pMiu(kk, :), N, 1);  pSigma(:, :, kk) = (Xshift' * ...  (diag(pGamma(:, kk)) * Xshift)) / Nk(kk);  end  % check for convergence  L = sum(log(Px*pPi'));  if L-Lprev < threshold  break;  end  Lprev = L;  
end  if nargout == 1  varargout = {Px};  
else  model = [];  model.Miu = pMiu;  model.Sigma = pSigma;  model.Pi = pPi;  varargout = {Px, model};  
end  %% Function Definition  function [pMiu pPi pSigma] = init_params()  pMiu = centroids; %k*D, 即k类的中心点  pPi = zeros(1, K); %k类GMM所占权重(influence factor)  pSigma = zeros(D, D, K); %k类GMM的协方差矩阵,每个是D*D的  % 距离矩阵,计算N*K的矩阵(x-pMiu)^2 = x^2+pMiu^2-2*x*Miu  distmat = repmat(sum(X.*X, 2), 1, K) + ... %x^2, N*1的矩阵replicateK列  repmat(sum(pMiu.*pMiu, 2)', N, 1) - ...%pMiu^2,1*K的矩阵replicateN行  2*X*pMiu';  [~, labels] = min(distmat, [], 2);%Return the minimum from each row  for k=1:K  Xk = X(labels == k, :);  pPi(k) = size(Xk, 1)/N;  pSigma(:, :, k) = cov(Xk);  end  
end  function Px = calc_prob()   %Gaussian posterior probability   %N(x|pMiu,pSigma) = 1/((2pi)^(D/2))*(1/(abs(sigma))^0.5)*exp(-1/2*(x-pMiu)'pSigma^(-1)*(x-pMiu))  Px = zeros(N, K);  for k = 1:K  Xshift = X-repmat(pMiu(k, :), N, 1); %X-pMiu  inv_pSigma = inv(pSigma(:, :, k));  tmp = sum((Xshift*inv_pSigma) .* Xshift, 2);  coef = (2*pi)^(-D/2) * sqrt(det(inv_pSigma));  Px(:, k) = coef * exp(-0.5*tmp);  end  
end  

end

  1. gmm_accuracy.m调用gmm.m,计算准确率:
    [cpp] view plaincopy
    function [ Accuracy ] = gmm_accuracy( Data_fea, gnd_label, K )
    %Calculate the accuracy Clustered by GMM model

px = gmm(Data_fea,K);
[~, cls_ind] = max(px,[],1); %cls_ind = cluster label
Accuracy = cal_accuracy(cls_ind, gnd_label);

function [acc] = cal_accuracy(gnd,estimate_label)  res = bestMap(gnd,estimate_label);  acc = length(find(gnd == res))/length(gnd);  
end  

end

  1. 主函数调用
    gmm_acc = gmm_accuracy(fea,gnd,N_classes);

写了本文进行总结后自己很受益,也希望大家可以好好YM下上面pluskid的gmm.m,不光是算法,其中的矩阵处理代码也写的很简洁,很值得学习。
另外看了两份东西非常受益,一个是pluskid大牛的《漫谈 Clustering (3): Gaussian Mixture Model》,一个是JerryLead的EM算法详解,大家有兴趣也可以看一下,写的很好。

转自http://blog.csdn.net/abcjennifer/article/details/8198352

这篇关于高斯混合模型(GMM)的EM算法实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138725

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的