HarmonyOS开发实战( Beta5版)高负载组件的渲染实践规范

2024-09-05 08:36

本文主要是介绍HarmonyOS开发实战( Beta5版)高负载组件的渲染实践规范,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

在应用开发中,有的页面需要在列表中加载大量的数据,就会导致组件数量较多或者嵌套层级较深,从而引起组件负载加重,绘制耗时增长。虽然可以通过组件复用避免组件重复创建,但是如果每个列表项中包含的组件较多,在转场或者列表滑动的时候列表项就会一次性加载大量的数据,可能引起卡顿掉帧等性能问题。

转场场景

由于业务需求,从当前页面进入一个新页面时,会有转场动画播放,并且在动画首帧中加载新页面所需要的数据。如果数据量较多,那么动画首帧的响应时延就会变长,导致后面的动画帧延迟播放,产生卡顿的情况。

动画

解决思路

既然转场时一次性加载大量的数据会导致卡顿情况,那么将数据拆分成多份并分批次进行加载就是一种解决思路。ArkTS中提供了DisplaySync(可变帧率),可以设置帧回调监听,让开发者在不同的帧中进行一些操作,这样就可以将本来在一帧中加载的数据分到多帧中加载,减少动画首帧的响应时间,降低完成时延。

常规代码

在自定义列表组件中一次性加载全部数据,可参考组件堆叠场景中的具体实现。

// CommonAppDevelopment/feature/componentstack/src/main/ets/view/ProductList.ets
@Component
export struct ProductList {private productData: ProductDataSource = new ProductDataSource();aboutToAppear(): void {this.productData.pushData(PRODUCT_DATA)}build() {WaterFlow() {LazyForEach(this.productData, (item: ProductDataModel) => {FlowItem() {ItemView({ item: item })}}, (item: ProductDataModel) => item.id.toString())}...}
}

这段代码里,在aboutToAppear()接口中,将数据放入productData中,并通过瀑布流加载。编译运行后,可以通过Trace图看到,转场动画的首帧(235970)耗时21ms左右,这是因为在点击进入页面时将6条数据全部放入瀑布流,在235970帧中需要计算6个子组件的尺寸,导致了响应时间增长。如果数据量更大,那么这个时间会变得更长,动画的卡顿效果就会更加明显。

image-20240717183013984

优化代码

在aboutToAppear()接口中添加DisplaySync的帧回调,并将数据拆分进行加载。

@Component
export struct ProductList {private productData: ProductDataSource = new ProductDataSource();private displaySync: displaySync.DisplaySync | undefined = undefined;private frame: number = 1;aboutToAppear(): void {// 创建DisplaySync对象this.displaySync = displaySync.create();// 设置期望帧率const range: ExpectedFrameRateRange = {expected: 120,min: 60,max: 120};this.displaySync.setExpectedFrameRateRange(range);// 添加帧回调this.displaySync.on("frame", () => {if (this.frame === 1) {hiTraceMeter.startTrace('firstFrame', 1);this.productData.pushData(PRODUCT_DATA.slice(0, 2))this.frame += 1;hiTraceMeter.finishTrace('firstFrame', 1);} else if (this.frame === 2) {hiTraceMeter.startTrace('secondFrame', 2);this.productData.pushData(PRODUCT_DATA.slice(2, PRODUCT_DATA.length));hiTraceMeter.finishTrace('secondFrame', 2);this.frame += 1;this.displaySync?.stop();}});// 开启帧回调监听this.displaySync.start();}aboutToDisappear(): void {// 页面销毁时需要停止帧回调this.displaySync?.stop();}build() {// TODO: 知识点:瀑布流容器,由“行”和“列”分割的单元格所组成,通过容器自身的排列规则,将不同大小的“项目”自上而下,如瀑布般紧密布局。WaterFlow() {LazyForEach(this.productData, (item: ProductDataModel) => {FlowItem() {ItemView({ item: item })}}, (item: ProductDataModel) => item.id.toString())}.nestedScroll({scrollForward: NestedScrollMode.PARENT_FIRST,scrollBackward: NestedScrollMode.SELF_FIRST}).columnsTemplate("1fr 1fr").columnsGap(COLUMNSGAP).rowsGap(ROWSGAP).padding({ bottom: $r("app.integer.component_stack_water_flow_padding_bottom") })}
}

在这段代码中,aboutToAppear()接口中并没有一次性加载全部数据,而是将数据拆分,在帧回调中分成2次进行加载。编译运行后,通过Trace图可以看到,动画首帧(232011)的耗时是12ms。相较于优化前的代码,不再是首帧占据大量的时间,而是将耗时分摊到了后面的动画帧中。在点击进入页面时,只放入了2条数据,所以232011帧的Measure[WaterFlow]只需要计算2个子组件的尺寸,并将剩余的4条数据放入productData,让后面的一帧(232013)计算剩余子组件的尺寸。当数据量更大时,可以将数据进行更多次拆分,将不会直接出现在屏幕上的数据放到第二帧或者第三帧中进行加载,降低首帧的响应时延,进而减少转场动画的卡顿现象。

image-20240717183924458

滑动场景

在日历应用中,需要在一个List里面加载每个月的全部天数,包括公历和农历日期,这样在一个Item中就会有最少58条数据加载,也就相当于需要58个组件。当列表滑动的时候,通过组件复用的aboutToReuse()接口设置新的数据,就会导致可能有58个组件一起刷新,可能会引起掉帧卡顿现象。

image-20240507183126622

解决思路

由于一次性加载大量数据、刷新大量组件会导致卡顿丢帧,那么减少一次性加载的数据量就是一种解决方法。但是由于业务需求,需要加载的数据总量和绘制的组件数量是不能减少的,那么只能想办法将数据进行拆分,将和数据相关的组件分成多次进行绘制。ArkTS中提供了DisplaySync(可变帧率),支持开发者设置回调监听,可以在回调里做一些数据的处理,在每一帧中加载少量的数据,减少卡顿或者滑动动画的掉帧现象。

优化示例

常规代码

通常情况下,会在aboutToReuse()中设置新的数据,并一次性绘制所有的组件。

@Entry
@Component
struct Direct {...// 初始化日历中一年的数据initCalenderData() {...}aboutToAppear() {...this.initCalenderData();}build() {Column() {...List() {LazyForEach(this.contentData, (monthItem: Month) => {// 每个月的日期ListItem() {ItemView({monthItem: monthItem,currentMonth: this.currentMonth,currentDay: this.currentDay})// 根据每月的天数设置复用ID,组件复用时会选择相同ID的组件进行复用.reuseId("reuse_id_" + monthItem.days.length.toString())}})}...}
}
@Reusable
@Component
struct ItemView {@State monthItem: Month = { month: '', num: 0, days: [], lunarDays: [] };...aboutToReuse(params: Record<string, Object>): void {hiTraceMeter.startTrace("reuse_" + (params.monthItem as Month).month, 1);this.monthItem = params.monthItem as Month;hiTraceMeter.finishTrace("reuse_" + (params.monthItem as Month).month, 1);}build() {Flex({ wrap: FlexWrap.Wrap }) {...// 日期信息ForEach(this.monthItem.days, (day: number, index: number) => {...}, (index: number): string => index.toString())}...}
}

在上面的代码中,通过组件复用,在ItemView的aboutToReuse()接口中,将一个月的数据直接设置到状态变量monthItem中,这样下面的Flex就会收到状态变量变更的消息通知,从而刷新组件中的数据。编译运行后,进入日历页面,通过SmartPerf Host工具,开始抓取Trace,然后滑动列表到最底端,结束Trace的抓取,通过SmartPerf Host对抓取的Trace文件进行分析,选中标签和相关数据区域,可以得到图1。图中三个Actual Timeline标签分别代表应用和RenderService每帧的总耗时、应用每帧的绘制时间和RenderService层每帧的绘制时间,render_service标签表示RenderService层每帧中的绘制操作,example.display标签是应用的bundlename,表示应用在每一帧中的操作,包括创建组件、加载数据等。

图1

image-20240507183017893

通过图中信息可以看到,滑动期间的帧率是113帧,按照手机120帧来计算,滑动期间掉帧率约为5.8%。放大图1后可以看到,应用每次加载新数据时(图2中橙色部分)RenderService层都会有一帧出现异常情况(图2中黄色部分)。此处对于图中颜色区域的解释,可参考SmartPerf Host工具。

图2

image-20240507183126622

将其中一部分继续放大后可以得到图3。选中Actual Timeline(render_service)标签中的146272后,可以通过箭头看到它所关联到的位置是Actual Timeline(example.display)标签中的209136和209137,即RenderService层出现的异常情况是由应用层中前面两帧里面的操作引起的。结合代码和箭头2的标签可以看到,在209135中调用了aboutToReuse接口,此时系统开始了组件复用的绘制操作。通过代码可以看到,在aboutToReuse接口将一个月的所有数据全部放入了当前被复用的组件中,并更新了所有的用于显示日期的Text组件中的数据(箭头3,diffIndexArray.lenght:35,表示有35个不同的元素),这就导致209136需要计算35个子组件的尺寸(箭头1),从而引起146272的绘制时间延长。在列表数据量较少时,其实并不会引起掉帧现象,因为每次延长帧的时间都很短,对帧率的影响较小,但是在列表数据较多时,就会因为延长帧过多,发生掉帧现象。

图3

image-20240507184557969

优化代码

通过DisplaySync中的帧回调方法,将数据拆分到每一帧中进行加载和绘制。此处只需要修改自定义子组件ItemView中加载数据的方式,所以与常规代码中相同的部分进行了省略。

首先,需要在ItemView中第一次使用时创建DisplaySync对象,设置期望帧率,添加帧回调的监听,然后进行启动。

@Reusable
@Component
struct ItemView {...aboutToAppear(): void {// 创建DisplaySync对象this.displaySync = displaySync.create();// 初始化期望帧率let range: ExpectedFrameRateRange = {expected: 120,min: 60,max: 120};// 设置期望帧率this.displaySync.setExpectedFrameRateRange(range);// 设置帧回调监听this.displaySync.on("frame", () => {...});// 开启监听帧回调this.displaySync.start();...  }...
}

然后,在监听中添加更新数据的代码。这里将每个月的数据更新拆分开来,第一步用来更新月份数据和计算总的执行步骤,最后一步将计数数据初始化,其余需要执行步骤的多少根据每次加载数据量会有所改变。

...
private temp: Month[] = [];
...
this.displaySync.on("frame", () => {// 数组中有数据时才开始执行if (this.temp.length > 0) {if (this.step === 0) {// 第一步:放入月份数据,并计算最多需要几帧完成数据操作hiTraceMeter.startTrace("reuse_" + this.step, 1);this.month = this.temp[0].month;this.monthNumber = this.temp[0].num;this.year = this.temp[0].year;this.maxStep = this.maxStep + Math.ceil(this.temp[0].days.length / this.MAX_EVERY_FRAME);hiTraceMeter.finishTrace("reuse_" + this.step, 1);this.step += 1;} else if (this.step === this.maxStep - 1) {// 最后一步:初始化部分计数数据this.temp.shift();this.step = 0;this.maxStep = 2;} else {hiTraceMeter.startTrace("reuse_" + this.step, 1);// 计算从所有数据中取值时的开始索引  let start: number = this.MAX_EVERY_FRAME * (this.step - 1);// 计算从所有数据中取值时的结束索引  let end: number = (this.MAX_EVERY_FRAME * this.step) > this.temp[0].days.length ? this.temp[0].days.length : this.MAX_EVERY_FRAME * this.step;// 更新日期数据  for (let i = start; i < end; i++) {this.days[i] = this.temp[0].days[i];this.lunarDays[i] = this.temp[0].lunarDays[i];}hiTraceMeter.finishTrace("reuse_" + this.step, 1);this.step += 1;}}
});
...

最后,在aboutToReuse接口中将数据放入数组中,用于帧回调中开始执行数据更新。

aboutToReuse(params: Record<string, Object>): void {hiTraceMeter.startTrace("reuse_" + (params.monthItem as Month).month, 1);this.temp.push(params.monthItem as Month);hiTraceMeter.finishTrace("reuse_" + (params.monthItem as Month).month, 1);
}

编译运行后,使用相同的方法,查看优化后的Trace信息,如图4所示。

图4

image-20240507190154885

从图4中可以看到,通过代码优化后,帧率是正常的120帧了。然后将图4中的Trace结果放大后可以看到图5,RenderService层出现的延长帧(Actual Timeline(render_service)标签中的黄色部分)明显减少了,已经不是优化前每次加载数据都会出现的情况了。

图5

image-20240507190741305

下面将图5中的信息继续放大一些,看一下现在每一帧里都做了什么操作,如图6所示。在211618中,开始调用aboutToReuse接口,由于只是将数据放入一个数组中,并没有更新复用组件中的数据,所以这一帧并没有发生延长现象。在211619中开始逐步更新复用组件中的数据,但是由于前一帧(211618)中并没有更新当前复用组件中的数据,所以在211619中并不需要绘制组件,所以此帧耗时依旧很短。结合代码可以看到,在211620中放入了5天的日期数据,由于前一帧(211619)只是设置了2条数据,并且只有1条会更新组件(this.month = this.temp[0].month会更新显示月份的Text),所以这一帧的绘制时间也不会超时。

图6

image-20240507195613210

继续看后面的Trace信息,如图7所示。和前一帧(211621)一样,此帧中更新了5天的日期数据,并且会重新测量上一帧(211621)中更新数据的5个Text组件尺寸(箭头1),而其余的组件由于数据并没有变动,所以测量被略过了(箭头2)。后面的帧是类似的,每次只会放入5天的数据,并且更新上一帧中设置的数据所关联的Text组件。由于每次更新的组件数量较少,每帧基本上都能在规定的时间内(1秒120帧,即8ms一帧)绘制完成,所以延长帧就会较少。这样不论列表中数据多还是少,都不会引起掉帧现象的发生。

图7

image-20240507200236522

不建议锁定最高帧率运行

不建议将ExpectedFrameRateRange中的expected、min、max都设置为120,否则会干扰系统的可变帧率机制运行,产生不必要的负载,进而影响到整机的性能和功耗。

反例

let sync = displaySync.create();
sync.setExpectedFrameRateRange({expected: 120,min: 120,max: 120
})

正例

let sync = displaySync.create();
sync.setExpectedFrameRateRange({expected: 60,min: 0,max: 60
})

主要原因有以下三点:

  1. ExpectedFrameRateRange中关键参数是expected(期望帧率),系统会优先按照expected设置的帧率执行。当系统难以满足expected帧率诉求时,会在min和max之间选一个更合适的帧率给到应用。
  2. 如果应用锁定120HZ,系统会优先满足应用的显式设置,按照120帧运行。此时手机功耗会显著增加,长时间运行会引起手机过热等严重影响用户体验的问题。同时也由于不必要的高帧率,会额外占据更多的算力,可能导致其他场景的响应受到不必要的延迟。
  3. 如果系统持续按照120HZ运行,从某种意义上来说此时系统的可变帧率能力已失效,这显然与可变帧率的设计原则不相符。

总结

通过上面的示例代码和优化过程,可以看到在列表中使用组件复用时,一次性全部加载时可能会引起掉帧。虽然在数据量较少时,单帧绘制的延长并不会引起掉帧,但是数据量变多后,这种延长帧的影响就会比较明显。合理进行数据拆分后,可以有效减少延长帧的发生,从而减少掉帧引起的性能问题。

FAQ

Q:在ItemView中,为什么要给ForEach设置第三个参数?

A:在组件复用中,如果有用到ForEach,必须设置第三个参数,即给每个数据设置一个key,否则ForEach中添加的组件不会被复用,而是会全部重新创建。

Q:对List中每一个ListItem的子组件都设置一个DisplaySync的帧回调监听,会不会引起性能问题?

A:并不会,通过示例中的Trace图可以看到,除了正在被复用的ItemView的DisplaySync的回调监听外,其余的监听耗时非常短,对性能的影响可以忽略不计。如图8所示。

图8

image-20240507194742115

Q:为什么抓取到的Trace中没有示例中那么多的标签?

A:需要通过hdc shell命令开启标签

hdc shell
param set persist.ace.debug.enabled 1
param set persist.ace.trace.enabled 1
param set persist.ace.trace.layout.enabled true
param set const.security.developermode.state true
param set persist.ace.trace.build.enabled 1

最后

小编在之前的鸿蒙系统扫盲中,有很多朋友给我留言,不同的角度的问了一些问题,我明显感觉到一点,那就是许多人参与鸿蒙开发,但是又不知道从哪里下手,因为资料太多,太杂,教授的人也多,无从选择。有很多小伙伴不知道学习哪些鸿蒙开发技术?不知道需要重点掌握哪些鸿蒙应用开发知识点?而且学习时频繁踩坑,最终浪费大量时间。所以有一份实用的鸿蒙(HarmonyOS NEXT)文档用来跟着学习是非常有必要的。 

为了确保高效学习,建议规划清晰的学习路线,涵盖以下关键阶段:

GitCode - 全球开发者的开源社区,开源代码托管平台  希望这一份鸿蒙学习文档能够给大家带来帮助~


鸿蒙(HarmonyOS NEXT)最新学习路线

该路线图包含基础技能、就业必备技能、多媒体技术、六大电商APP、进阶高级技能、实战就业级设备开发,不仅补充了华为官网未涉及的解决方案

路线图适合人群:

IT开发人员:想要拓展职业边界
零基础小白:鸿蒙爱好者,希望从0到1学习,增加一项技能。
技术提升/进阶跳槽:发展瓶颈期,提升职场竞争力,快速掌握鸿蒙技术

2.视频学习教程+学习PDF文档

HarmonyOS Next 最新全套视频教程

  纯血版鸿蒙全套学习文档(面试、文档、全套视频等)       

​​

总结

参与鸿蒙开发,你要先认清适合你的方向,如果是想从事鸿蒙应用开发方向的话,可以参考本文的学习路径,简单来说就是:为了确保高效学习,建议规划清晰的学习路线

这篇关于HarmonyOS开发实战( Beta5版)高负载组件的渲染实践规范的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138456

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

JS常用组件收集

收集了一些平时遇到的前端比较优秀的组件,方便以后开发的时候查找!!! 函数工具: Lodash 页面固定: stickUp、jQuery.Pin 轮播: unslider、swiper 开关: switch 复选框: icheck 气泡: grumble 隐藏元素: Headroom

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca