简述CCS平面线性光源

2024-09-05 07:04
文章标签 线性 简述 平面 ccs 光源

本文主要是介绍简述CCS平面线性光源,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      光源在机器视觉系统中起着重要作用,不同环境、场景及应用合适光源都不一样,今天我们来看看LFX3-PT系列平面线性光源。它是最适合检测镜面物体的凹凸,外壳小巧的光源。备有根据检测条件可选的2种线间距。1mm型(型号末尾:A)、2mm型(型号末尾:B)。

特点:

1、将导光板表面的印刷图案从点状更改为线状,可对同轴光源难以检测出的镜面物体上,“不明显的凹凸”进行提取并实现成像。

LFX3-100-PT

2、提供2种线间距

可根据检测条件进行选择

3、为了获得适合的图像

安装光源时,使现状图案能够投影到被测物体上,通常情况下,请将相机焦距对准光源的现状图案,而非被测物体。成像中如有干涉条纹,可以尝试放大相机光圈;光源与被测物体之间拉开距离。

成像条件(相机与被测物体之间的距离,焦距位置,光圈大小),和光源位置因不同检测而异。

成像实例:

金属板外观成像

金属板外观成像

如上图所示,左侧是金属板工件,中间是在LED同轴光源下,均匀地照亮整个表面,因此很难探测到凸起。右侧是在LFX3线性光源下,线条图案光源将凸起突出为曲线。

机器视觉产品资料查询平台可查看更多工业光源的信息。

这篇关于简述CCS平面线性光源的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138270

相关文章

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^

【高等代数笔记】线性空间(一到四)

3. 线性空间 令 K n : = { ( a 1 , a 2 , . . . , a n ) ∣ a i ∈ K , i = 1 , 2 , . . . , n } \textbf{K}^{n}:=\{(a_{1},a_{2},...,a_{n})|a_{i}\in\textbf{K},i=1,2,...,n\} Kn:={(a1​,a2​,...,an​)∣ai​∈K,i=1,2,...,n

求空间直线与平面的交点

若直线不与平面平行,将存在交点。如下图所示,已知直线L过点m(m1,m2,m3),且方向向量为VL(v1,v2,v3),平面P过点n(n1,n2,n3),且法线方向向量为VP(vp1,vp2,vp3),求得直线与平面的交点O的坐标(x,y,z): 将直线方程写成参数方程形式,即有: x = m1+ v1 * t y = m2+ v2 * t

高斯平面直角坐标讲解,以及地理坐标转换高斯平面直角坐标

高斯平面直角坐标系(Gauss-Krüger 坐标系)是基于 高斯-克吕格投影 的一种常见的平面坐标系统,主要用于地理信息系统 (GIS)、测绘和工程等领域。该坐标系将地球表面的经纬度(地理坐标)通过一种投影方式转换为平面直角坐标,以便在二维平面中进行距离、面积和角度的计算。 一 投影原理 高斯平面直角坐标系使用的是 高斯-克吕格投影(Gauss-Krüger Projection),这是 横

1、简述linux操作系统启动流程

1、简述linux操作系统启动流程 启动第一步--加载BIOS 当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的重要,以至于计算机必须在最开始就找到它。这是因为BIOS中包含了CPU的相关信息、设备启动顺序信息、硬盘信息、内存信息、时钟信息、PnP特性等等。开机时将ROM中的指令映射到RAM的低地址空间,CPU读取到这些指令,硬件的健康状况进行检查,按照BIOS中设置的启

带头结点的线性链表的基本操作

持续了好久,终于有了这篇博客,链表的操作需要借助图像模型进行反复学习,这里尽可能的整理并记录下自己的思考,以备后面复习,和大家分享。需要说明的是,我们从实际应用角度出发重新定义了线性表。 一. 定义 从上一篇文章可以看到,由于链表在空间的合理利用上和插入、删除时不需要移动等优点,因此在很多场合下,它是线性表的首选存储结构。然而,它也存在某些实现的缺点,如求线性表的长度时不如顺序存储结构的

浙大数据结构:02-线性结构4 Pop Sequence

这道题我们采用数组来模拟堆栈和队列。 简单说一下大致思路,我们用栈来存1234.....,队列来存输入的一组数据,栈与队列进行匹配,相同就pop 机翻 1、条件准备 stk是栈,que是队列。 tt指向的是栈中下标,front指向队头,rear指向队尾。 初始化栈顶为0,队头为0,队尾为-1 #include<iostream>using namespace std;#defi

深度学习与大模型第3课:线性回归模型的构建与训练

文章目录 使用Python实现线性回归:从基础到scikit-learn1. 环境准备2. 数据准备和可视化3. 使用numpy实现线性回归4. 使用模型进行预测5. 可视化预测结果6. 使用scikit-learn实现线性回归7. 梯度下降法8. 随机梯度下降和小批量梯度下降9. 比较不同的梯度下降方法总结 使用Python实现线性回归:从基础到scikit-learn 线性

C#中的各种画刷, PathGradientBrush、线性渐变(LinearGradientBrush)和径向渐变的区别

在C#中,画刷(Brush)是用来填充图形(如形状或文本)内部区域的对象。在.NET框架中,画刷是System.Drawing命名空间的一部分,通常用于GDI+绘图操作。以下是一些常用的画刷类型: SolidBrush:用于创建单色填充的画刷。HatchBrush:用于创建具有图案填充的画刷。TextureBrush:用于创建具有图像纹理填充的画刷。LinearGradientBrush:用于创