AI超强语音转文本SenseVoice,本地化部署教程!

2024-09-05 06:36

本文主要是介绍AI超强语音转文本SenseVoice,本地化部署教程!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 模型介绍
    • SenseVoice在线预览链接
    • 本地化部署
      • VsCode 远程连接

模型介绍

SenseVoice专注于高精度多语言语音识别、情感辨识和音频事件检测

  • 多语言识别: 采用超过40万小时数据训练,支持超过50种语言,识别效果上优于Whisper模型。
  • 富文本识别:
    • 具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。
    • 支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。
  • 高效推理: SenseVoice-Small模型采用非自回归端到端框架,推理延迟极低,10s音频推理仅耗时70ms,15倍优于Whisper-Large。
  • 微调定制: 具备便捷的微调脚本与策略,方便用户根据业务场景修复长尾样本问题。

SenseVoice在线预览链接

  1. SenseVoice 在线预览:https://www.modelscope.cn/studios/iic/SenseVoice

本地化部署

这里使用autodl 机器学习平台,官网地址:https://www.autodl.com/market/list

直接到算力市场,选择按量计费,地区随便选择一个,这里使用4090显卡。

如图选择PyTorch 版本,最后点击创建。

创建好以后就来到了控制台,点击AutoPanel 面板,设置默认为清华源。

点击选择清华源,因为清华源下载依赖包比较快。

接着回到控制台,点击进入JupyterLab

进入到autodl-tmp 目录下,然后打开终端。

然后克隆项目,输入如下命令:

git clone https://github.com/FunAudioLLM/SenseVoice.git

如果提示网络超时等,输入如下命令,完了重新拉取代码就好。

source /etc/network_turbo

继续打开一个笔记本,下载模型。

键入如下代码后运行:

!pip install modelscope

继续键入如下代码下载模型:

from modelscope.hub.snapshot_download import snapshot_downloadmodel_dir = snapshot_download("iic/SenseVoiceSmall", cache_dir='ai_models')
print(model_dir)
model_dir = snapshot_download("iic/speech_fsmn_vad_zh-cn-16k-common-pytorch", cache_dir='ai_models')
print(model_dir)

出现进度条说明模型开始下载了。

然后回到终端,进入SenseVoice目录。

cd SenseVoice/

创建虚拟环境

# 创建一个名为venv 的虚拟环境。
python -m venv venv

接着激活虚拟环境。

 source ./venv/bin/activate

安装依赖

 pip install -r requirements.txt

安装好依赖以后,我们更新pip

pip install --upgrade pip

VsCode 远程连接

回到控制台,复制ssh配置。

打开Vsocode,远程连接。

粘贴登录信息

选择第一个默认配置。

选择第一个链接。

复制密码

粘贴密码

接着打开文件夹,选择/root/autodl-tmp/

选择信任

点击打开终端

接着激活虚拟环境。

 source ./venv/bin/activate

接着回到笔记本模型哪里,复制下载的模型路径。

回到VsCode ,编辑SenseVoice/webui.py,设置模型的路径为如下:

最后,见证奇迹的时候到了,运行我们的Python代码。

 python webui.py 

选择在浏览器打开。

接着,就可以快乐的玩耍了。

当我们上传音频时遇到了错误如下错误:

针对安装ffmpeg时遇到的问题,按以下步骤操作:

  1. 首先更新软件包列表:
sudo apt update
  1. 如果更新后仍无法安装,可能需要添加universe仓库:
sudo add-apt-repository universe
sudo apt update
  1. 然后再次尝试安装ffmpeg:
sudo apt install ffmpeg -y

如果还是不行,可能是ffmpeg所在的仓库没有启用。那么可以尝试:

  1. 启用multiverse仓库:
sudo add-apt-repository multiverse
sudo apt update
  1. 安装ffmpeg:
sudo apt install ffmpeg

这篇关于AI超强语音转文本SenseVoice,本地化部署教程!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138219

相关文章

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

PyCharm 接入 DeepSeek最新完整教程

《PyCharm接入DeepSeek最新完整教程》文章介绍了DeepSeek-V3模型的性能提升以及如何在PyCharm中接入和使用DeepSeek进行代码开发,本文通过图文并茂的形式给大家介绍的... 目录DeepSeek-V3效果演示创建API Key在PyCharm中下载Continue插件配置Con

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创