6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)

本文主要是介绍6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一.堆(Heap)的基本介绍

二.堆的常用操作(以小根堆为例)

三.实现代码

3.1 堆结构定义

3.2 向下调整算法*

3.3 初始化堆*

3.4 销毁堆

3.4 向上调整算法*

 3.5 插入数据

3.6 删除数据

3.7 返回堆顶数据

四.下篇内容

1.堆排序

2.TopK问题


一.堆(Heap)的基本介绍

        了解堆之前我们要简单了解完全二叉树:        

        在二叉树中,我们使用指针来连接每一个结点,最后构成一颗二叉树。而堆是一种使用数组来表示完全二叉树。其满足以下两条规则。

        1.堆中结点值总是大于或者小于其父结点的值。

        2.堆总是一颗完全二叉树。

由此可以推出有两种堆:大根堆和小根堆。

大根堆:根节点的值最大。

小根堆:根节点的值最小。

在堆(二叉树)中,如果一个结点的下标为i

其父亲的结点的下标为 (i-1)/ 2

其左孩子结点的下标为 (i+1)*2 -1  即  i*2 +1

其右孩子结点的下标为 (i+1)*2      即  i*2 + 2

数组的下标由0开始,读者可根据下图进行理解

二.堆的常用操作(以小根堆为例)

//初始化堆
void HeapInit(Heap* php, DataType* arr, int n);//数组建堆主要依赖的算法(这个算法要求数组的左右子树都是小堆)
//小堆,使用向下调整算法
void Adjustdown(DataType* arr, int n, int root);//向上调整算法
void Adjustup(DataType* arr, int n, int root);//销毁堆
void HeapDestory(Heap* php);//插入数据
void HeapPush(Heap* php, DataType x);//删除数据
void HeapPop(Heap* php, DataType x);//求堆顶(根)数据
DataType HeadTop(Heap* php);//交换两个数据
void swap(DataType* p1, DataType* p2);

三.实现代码

3.1 堆结构定义

//以小根堆为例
typedef int DataType;
typedef struct Heap
{DataType* arr;    //数组int capacity;     //容量int size;         //元素大小
}Heap;

3.2 向下调整算法*

        小根堆使用该算法的前提是左右子树都为小根堆,大根堆的前提是左右子树都为大根堆

该算法是从根结点依次向下找到比自己小(或者大)的结点,然后进行交换。

最后就能将新插入的根节点放到相应的位置

调整规则:

小根堆:根节点每一次与孩子结点中较小的一个交换

大根堆:根节点每一次与孩子结点中较大的一个交换

如下图

代码如下(以小根堆为例)

//向下调整算法
void AdjustDwon(DataType* arr, int n, int root)
{//1.小根堆,找出左右孩子中较小的结点int parent = root;int child = root * 2 + 1;	//表示左孩子while (child < n){//找到右孩子,如果右孩子比左孩子小,让child++。注意必须存在右孩子才能这么做if (child + 1 < n && arr[child + 1] < arr[child]){child++;}//如果该孩子比父亲小,就要交换if (arr[child] < arr[parent]){swap(arr[child], arr[parent]);//向下继续调整parent = child;child = parent * 2 + 1;}else{//如果孩子比父亲大,交换结束break;}}
}

3.3 初始化堆*

        初始化堆:将一个随机的数组(数组大小随机,元素大小也随机)转换为堆。

思路:

1.将一个数组拷贝到一个堆结构中

2.利用向下调整算法对整个数组进行调整,由于整个数组不能直接进行向下调整(左右子树不符合堆结构),所以我们使用向下调整算法堆 最后一个结点的父亲结点开始调整,然后依次对这个结点之前的结点开始调整。

3.最后得出完整的堆结构

流程图:

代码

//初始化堆
void HeapInit(Heap* hp, DataType* arr, int n)
{//开辟空间,大小为 DataType*nhp->arr = (DataType*)malloc(sizeof(DataType) * n);assert(hp->arr != nullptr);memcpy(hp->arr, arr, sizeof(DataType) * n);hp->size = n;hp->capacity = n;//拷贝好数据后,由于数据是随机的,所以我们使用调整算法建堆//我们从最后一个度为2的结点开始向前依次对每一个结点都进行向下调整//最后一个结点下标为 n-1 则其父亲结点为(n-1-1)/2for (int i = (n - 1 - 1) / 2; i > 0; i--){Adjustdown(hp->arr, hp->size, i);}
}

3.4 销毁堆

//销毁堆
void HeapDestory(Heap* php)
{assert(php);free(php->arr);php->arr = NULL;php->size = 0;php->capacity = 0;
}

3.4 向上调整算法*

当我们插入新数据时,这个数据会破坏堆结构(如插入到数组末尾),所以我们需要向上调整

和向下调整算法类似

思路:

        让新增节点依次和自己的父亲比较,然后交换即可

        小根堆:比父亲小,交换。直到比父亲大就结束

        大根堆:比父亲大,交换。直到比父亲小就结束

流程图:

代码

//向上调整算法,以小根堆为例
void AdjustUp(DataType* arr, int n, int child)
{int parent = (child - 1) / 2;while (child > 0){if (arr[child] < arr[parent]){swap(arr[child], arr[parent]);//继续向上调整child = parent;parent = (child - 1) / 2;}else{break;}}
}

 3.5 插入数据

//插入数据
void HeapPush(Heap* hp, DataType x)
{assert(hp);//1.增容if (hp->size == hp->capacity){hp->capacity *= 2;DataType* tmp = (DataType*)realloc(hp->arr, sizeof(DataType) * hp->capacity);assert(tmp != NULL);hp->arr = tmp;}//2.在数组的插入数据hp->arr[hp->size] = x;hp->size++;//对数组进行向上调整,将小的数据向上调整Adjustup(hp->arr, hp->size, hp->size - 1);
}

3.6 删除数据

删除堆顶的数据

我们交换第一个数据和最后一个数据,然后删除最后一个数据。再对堆顶进行向下调整

这样就能满足删除后,整个堆还是满足规则的

//删除数据(删掉堆顶的数据)
//类似于堆排序,交换第一个和最后一个数据。保证根节点的左右子树都是小根堆
void HeapPop(Heap* hp)
{assert(hp);assert(hp->arr);swap(hp->arr[0], hp->arr[hp->size - 1]);hp->size--;Adjustdown(hp->arr, hp->size, 0);
}

3.7 返回堆顶数据

直接返回0下标处的数据即可

//求堆顶(根)数据
DataType HeadTop(Heap* hp)
{assert(hp);assert(hp->size > 0);return hp->arr[0];
}

四.下篇内容

1.堆排序

2.TopK问题

这篇关于6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138150

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详