智能优化算法-北方苍鹰优化算法(NGO)(附源码)

2024-09-05 02:28

本文主要是介绍智能优化算法-北方苍鹰优化算法(NGO)(附源码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录
1.内容介绍
2.部分代码
3.实验结果
4.内容获取

1.内容介绍

北方苍鹰优化算法 (Northern Goshawk Optimizer, NGO) 是一种基于群体智能的元启发式优化算法,它模拟了北方苍鹰(Northern Goshawk)的捕食行为、领地行为以及社交互动,用于解决复杂的优化问题。

NGO的工作机制主要包括:

  • 捕食行为:模拟北方苍鹰在捕食时的精准定位和攻击策略,用于探索解空间。
  • 领地行为:通过模拟北方苍鹰保护自己领地的行为,促进算法的局部搜索能力。
  • 社交互动:模拟北方苍鹰之间的社交互动,以维持种群多样性。

优点包括:

  • 强大的探索能力:NGO能够有效地探索解空间的不同区域。
  • 灵活性:适用于多种优化问题,包括连续和离散优化。
  • 快速收敛:通常能够在较少迭代次数内找到较好的解。
  • 易于实现:算法设计直观,易于编程实现。

不足之处:

  • 可能的早熟收敛:在某些情况下,NGO可能会过早收敛到局部最优解。
  • 参数敏感性:算法性能可能会受到某些关键参数的影响,需要适当的参数调优。
  • 计算成本:对于非常复杂的问题,NGO可能需要较高的计算资源。

总之,NGO作为一种新颖的优化算法,在处理复杂优化问题方面展现出了潜力。随着进一步的研究和应用,NGO有望成为解决实际问题的有效工具。


2.部分代码

clc
clear
close all
SearchAgents=30; 
Fun_name='F9';  
Max_iterations=1000; 
[lowerbound,upperbound,dimension,fitness]=fun_info(Fun_name);
[Score,Best_pos,NGO_curve]=NGO(SearchAgents,Max_iterations,lowerbound,upperbound,dimension,fitness);
figure('Position',[300 300 660 290])
subplot(1,2,1);
func_plot(Fun_name);
title('Objective space')
xlabel('x_1');
ylabel('x_2');
zlabel([Fun_name,'( x_1 , x_2 )'])
subplot(1,2,2);
plots=semilogx(NGO_curve,'Color','g');
set(plots,'linewidth',2)
hold on
title('Objective space')
xlabel('Iterations');
ylabel('Best score');
axis tight
grid on
box on
legend('NGO')
display(['The best solution obtained by NGO is : ', num2str(Best_pos)]);
display(['The best optimal value of the objective funciton found by NGO is : ', num2str(Score)]);    


3.实验结果


4.内容获取

北方苍鹰优化算法matalb源代码:主页欢迎自取,点点关注,非常感谢!

这篇关于智能优化算法-北方苍鹰优化算法(NGO)(附源码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137709

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig