图像数据到网格数据-3——Cuberille算法

2024-09-04 19:48

本文主要是介绍图像数据到网格数据-3——Cuberille算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

  这是本博客网格生成算法系列的第三篇,第一篇里面介绍了最为流行的MarchingCubes算法,第二篇中使用新三角形表来对MC算法进行了简化改进,形成了SMC算法。而这篇将介绍一种新的不同与MC算法思路的新网格生成算法,叫做Cuberille法,这种算法的思想相比MC算法要简单,更加易于实现。

 

体素立方体模型

  根据第一篇的介绍,我们知道MC算法的基本模型是把组成三维图像的体素都当作空间上的点而8体素组成的体元作为立方体单元。相比于MC算法,Cuberille算法是把体素都想象成立方体,而没有所谓体元的概念了。这一点其实更加符合人们对图像的最初认识,最初接触到计算机中的二维图像的时候,一般人理解像素都是将其当成一个涂了颜色的小方块。而Cuberille算法的理解正是把组成三维图像的体素也当成涂了颜色的小立方体块。例如一个三维图像中所有的实点(这里的实点和MC算法里一样指的是内容区域的体素,下文的虚点同理指背景区域的体素)组成一个猪头的形状,那么就可以认为这个猪头是很多很小的立方体方块堆砌而成的。

 
猪头   三维图像中的猪头体素方块集合

 

基于正方形片为边界建模

  使用小立方体堆砌组成内容区域,那么这个内容区域的边界必然就是很多正方形面片组成的Mesh,由于每个正方形面片能分成两个三角形面片,那么实际上这个表面的Mesh也是三角网格。下文的重点是研究如何找到这些组成边界面的小正方形面片。

  首先,小正方形面片总是介于实点和虚点之间,下图使用二维的情况来说明这个边界。

   
例子1   例子2   说明

  可以看出,实点和虚点的边界面总是存在一个边界,其长度等于单位长度。那么只要找到图像中所有这样的虚实点交界处的边界,将其焊接起来就能组成内容的表面模型。

  因而总结出Cbuerille算法的主题思路如下:

  1. 创建一个空的Mesh
  2. 按层、列、行三重循环遍历所有的体素V
    1. 假如V为实点
      1. 获取V的六邻域体素集合Adj6(V)
      2. 遍历Adj6(V)中的体素T
        1. 若T超出图像范围或者T为虚点
        2. 创建介于V与T之间的正方形片,并加入到Mesh

  下一步就是探讨如何来为实体素V和它的6邻接邻居虚点T(这个T也可能是超出图像范围的点,这里当其为虚点也一样的处理)中间建立方形片并加入到Mesh。为了实现高效统一的创建面片的方案,有必要对邻域和顶点进行编号。下图是一个邻域编号。显示了一个体素六个方向邻域的编号与对应坐标计算方式:

邻接体素编号 相对偏移
0 (0,1,0)
1 (0,-1,0)
2 (1,0,0)
3 (-1,0,0)
4  (0,0,1)
5 (0,0,-1) 
6邻域指示 6邻域邻接体素编号 邻接体素方位对照表

  同时为了表示立方体8个体素位置的顶点,我们也为他进行编号如下图表所示:

体素编号 体素偏移
0 (0,1,1)
1 (1,1,1)
2 (1,0,1)
3 (0,0,1)
4 (0,0,0)
5 (1,0,0)
6 (1,1,0)
7 (0,1,0)
预览图 体素方位对照表

  这样一个立方体的6个正方形面里的三角形组成就可以使用下面的图表来表示:

邻接方位编号 方位描述 三角形顶点索引
0 上面 (0,1,6)
(0,6,7)
1 下面 (3,4,5)
(3,5,2)
2 右面 (1,2,5)
(1,5,6)
3 左面 (0,7,4)
(0,4,3)
4 前面 (0,3,2)
(0,2,1)
5 后面 (4,7,6)
(4,6,5)
预览图(只标示出了前方向的正方形) 三角形顶点对照表

  这样只需要知道T是V的第几个邻居就可以创建三角片了。下面的步骤描述了这个逻辑过程。

  1. 根据T的索引 r 找出其第一个三角片的三个顶点索引。
  2. 根据三个顶点索引找出三个顶点坐标偏移量
  3. 使用V的坐标加上偏移量计算出三角形三个顶点的坐标位置
  4. 创建并添加这个三角形。
  5. 根据T的索引 r 找出其第二个三角片的三个顶点索引。
  6. 根据三个顶点索引找出三个顶点坐标偏移量
  7. 使用V的坐标加上偏移量计算出三角形三个顶点的坐标位置
  8. 创建并添加这个三角形。

  注意这里对偏移量做了一些处理,本来应该的偏移量应该是用浮点数0.5来组成的,如下图所示,焊接点都处在体素位置中点处,所以三角形顶点都应该是“X.5”形式的浮点数。而上文的过程中使用的偏移量(如顶点对应表中的偏移量)是将所有点的坐标都加了0.5之后的位置。之所以使用平移0.5之后的坐标,是希望利用整数点坐标来使用哈希表焊接。那么有必要在算法结束的时候把所有的点坐标-0.5来恢复真正的位置。不过有时由于只需要结果的形状一致,所以也不做处理。

  最后是用C#实现的Cuberille算法的代码,其中涉及到的bitmap类,哈希表类,Meshbuilder类在前几篇文章中多次提到过,就不重复粘贴代码了。

复制代码
public struct Int16Triple
{public int X;public int Y;public int Z;public Int16Triple(int x, int y, int z){X = x;Y = y;Z = z;}
}
public struct FloatTriple
{public float X;public float Y;public float Z;public FloatTriple(float x, float y, float z){X = x;Y = y;Z = z;}
}
public class CuberilleProcessor
{public static Int16Triple[][] AdjIndexToVertexIndices = new Int16Triple[6][]{new Int16Triple[2] { new Int16Triple(0, 1, 6), new Int16Triple(0, 6, 7) },new Int16Triple[2] { new Int16Triple(3, 4, 5), new Int16Triple(3, 5, 2) },new Int16Triple[2] { new Int16Triple(1, 2, 5), new Int16Triple(1, 5, 6) },new Int16Triple[2] { new Int16Triple(0, 7, 4), new Int16Triple(0, 4, 3) },new Int16Triple[2] { new Int16Triple(0, 3, 2), new Int16Triple(0, 2, 1) },new Int16Triple[2] { new Int16Triple(4, 7, 6), new Int16Triple(4, 6, 5) },};public static Int16Triple[] VertexIndexToPositionDelta = new Int16Triple[8]{new Int16Triple(0, 1, 1),new Int16Triple(1, 1, 1),new Int16Triple(1, 0, 1),new Int16Triple(0, 0, 1),new Int16Triple(0, 0, 0),new Int16Triple(1, 0, 0),new Int16Triple(1, 1, 0),new Int16Triple(0, 1, 0),};BitMap3d bmp;public CuberilleProcessor(BitMap3d bitmap){bmp = bitmap;}public Mesh GeneratorSurface(){int Width = bmp.width;int Height = bmp.height;int Depth = bmp.depth;Int16Triple[] adjPoints6 = new Int16Triple[6];MeshBuilder_IntegerVertex mb = new MeshBuilder_IntegerVertex(bmp.width, bmp.height, bmp.depth);for (int k = 0; k <= Depth - 1; k++){for (int j = 0; j <= Height - 1; j++){for (int i = 0; i <= Width - 1; i++){if (IsInside(i,j,k)){Int16Triple p = new Int16Triple(i, j, k);InitAdj6(adjPoints6,p);for (int r = 0; r < adjPoints6.Length; r++){Int16Triple t = adjPoints6[r];if (!IsInside(t.X,t.Y,t.Z)){ExtractSquare(r,p,mb);}}}}}}Mesh m= mb.GetMesh();for (int i = 0; i < m.Vertices.Count; i++){Point3d p = m.Vertices[i];p.X -= 0.5f;p.Y -= 0.5f;p.Z -= 0.5f;}//若需要真实位置,则都得平移回去return m;}private void ExtractSquare(int r,Int16Triple p, MeshBuilder_IntegerVertex mb){int p0x, p0y, p0z, p1x, p1y, p1z, p2x, p2y, p2z;//
        Int16Triple deltaA0 = VertexIndexToPositionDelta[AdjIndexToVertexIndices[r][0].X];Int16Triple deltaA1 = VertexIndexToPositionDelta[AdjIndexToVertexIndices[r][0].Y];Int16Triple deltaA2 = VertexIndexToPositionDelta[AdjIndexToVertexIndices[r][0].Z];p0x = p.X + deltaA0.X;p0y = p.Y + deltaA0.Y;p0z = p.Z + deltaA0.Z;p1x = p.X + deltaA1.X;p1y = p.Y + deltaA1.Y;p1z = p.Z + deltaA1.Z;p2x = p.X + deltaA2.X;p2y = p.Y + deltaA2.Y;p2z = p.Z + deltaA2.Z;mb.AddTriangle(new Int16Triple(p0x, p0y, p0z), new Int16Triple(p1x, p1y, p1z), new Int16Triple(p2x, p2y, p2z));Int16Triple deltaB0 = VertexIndexToPositionDelta[AdjIndexToVertexIndices[r][1].X];Int16Triple deltaB1 = VertexIndexToPositionDelta[AdjIndexToVertexIndices[r][1].Y];Int16Triple deltaB2 = VertexIndexToPositionDelta[AdjIndexToVertexIndices[r][1].Z];p0x = p.X + deltaB0.X;p0y = p.Y + deltaB0.Y;p0z = p.Z + deltaB0.Z;p1x = p.X + deltaB1.X;p1y = p.Y + deltaB1.Y;p1z = p.Z + deltaB1.Z;p2x = p.X + deltaB2.X;p2y = p.Y + deltaB2.Y;p2z = p.Z + deltaB2.Z;mb.AddTriangle(new Int16Triple(p0x, p0y, p0z), new Int16Triple(p1x, p1y, p1z), new Int16Triple(p2x, p2y, p2z));}public virtual bool IsInside(int x, int y, int z){if (x <= 0 || y <= 0 || z <= 0 || x > bmp.width || y > bmp.height || z > bmp.depth)return false;else{return bmp.GetPixel(x, y, z) == BitMap3d.WHITE;}}//judge if a voxel is inside the surfacepublic static void InitAdj6(Int16Triple[] adjPoints6,Int16Triple p){adjPoints6[0].X = p.X;adjPoints6[0].Y = p.Y + 1;adjPoints6[0].Z = p.Z;adjPoints6[1].X = p.X;adjPoints6[1].Y = p.Y - 1;adjPoints6[1].Z = p.Z;adjPoints6[2].X = p.X + 1;adjPoints6[2].Y = p.Y;adjPoints6[2].Z = p.Z;adjPoints6[3].X = p.X - 1;adjPoints6[3].Y = p.Y;adjPoints6[3].Z = p.Z;adjPoints6[4].X = p.X;adjPoints6[4].Y = p.Y;adjPoints6[4].Z = p.Z + 1;adjPoints6[5].X = p.X;adjPoints6[5].Y = p.Y;adjPoints6[5].Z = p.Z - 1;}//initialize poistions of the 6-adjacency points
}
复制代码

 

算法结果

  算法使用Engine.raw数据,生成的Cuberille表面放大后的效果图如下,可以看出确实是由方块组成的模型:

  同时使用SMC算法对Engine数据生成表面,放在一起进行对比呈现,同时比较他们的网格规模的图表如下:

- SMC算法 Cuberille算法
预览图
顶点数 216147 311263
三角形数 432370 622638

  可以看出Cuberille的显示效果显然不如SMC算法平滑(自然也不会比经典MC算法平滑),同时相比SMC算法输出规模更大。这些都是Cuberille算法的缺点,所以现在实际应用场合中较少使用这个算法,不过在一些特殊场合,还是会见到这个算法的身影。

  本文的代码可见本人的github:https://github.com/chnhideyoshi/SeededGrow2d

这篇关于图像数据到网格数据-3——Cuberille算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136862

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个