混合灰狼优化(HGWO,DE-GWO)算法matlab源码

2024-09-04 18:32

本文主要是介绍混合灰狼优化(HGWO,DE-GWO)算法matlab源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明:博主所有博文及源码中示例所用的支持向量机算法均使用faruto改进的LIBSVM工具箱3.1版本,详细可参见faruto博客http://blog.sina.com.cn/u/1291365075以及http://www.matlabsky.com/thread-17936-1-1.html。

今天学习一个比较新的优化算法,用差分进化(DE)改进原始的灰狼优化(GWO)得到的HGWO(也可以叫DE-GWO)算法。仍然以优化SVR参数为例,需要的同学可以根据需要自己修改源码。

完整程序和示例文件地址:http://download.csdn.net/detail/u013337691/9675376
百度云链接: http://pan.baidu.com/s/1qYvVguS 密码: i7ie

function [bestc,bestg,test_pre]=my_HGWO_SVR(para,input_train,output_train,input_test,output_test)
% 参数向量 parameters [n,N_iteration,beta_min,beta_max,pCR]
% n为种群规模,N_iteration为迭代次数
% beta_min 缩放因子下界 Lower Bound of Scaling Factor
% beta_max=0.8; % 缩放因子上界 Upper Bound of Scaling Factor
% pCR 交叉概率 Crossover Probability
% 要求输入数据为列向量(矩阵)%% 数据归一化
[input_train,rule1]=mapminmax(input_train');
[output_train,rule2]=mapminmax(output_train');
input_test=mapminmax('apply',input_test',rule1);
output_test=mapminmax('apply',output_test',rule2);
input_train=input_train';
output_train=output_train';
input_test=input_test';
output_test=output_test';
%% 利用差分进化-灰狼优化混合算法(DE_GWO)选择最佳的SVR参数
nPop=para(1); % 种群规模 Population Size
MaxIt=para(2); % 最大迭代次数Maximum Number of Iterations
nVar=2; % 自变量维数,此例需要优化两个参数c和g Number of Decision Variables
VarSize=[1,nVar]; % 决策变量矩阵大小 Decision Variables Matrix Size
beta_min=para(3); % 缩放因子下界 Lower Bound of Scaling Factor
beta_max=para(4); % 缩放因子上界 Upper Bound of Scaling Factor
pCR=para(5); %  交叉概率 Crossover Probability
lb=[0.01,0.01]; % 参数取值下界
ub=[100,100]; % 参数取值上界
%% 初始化
% 父代种群初始化
parent_Position=init_individual(lb,ub,nVar,nPop); % 随机初始化位置
parent_Val=zeros(nPop,1); % 目标函数值
for i=1:nPop % 遍历每个个体parent_Val(i)=fobj(parent_Position(i,:),input_train,output_train,input_test,output_test); % 计算个体目标函数值
end
% 突变种群初始化
mutant_Position=init_individual(lb,ub,nVar,nPop); % 随机初始化位置
mutant_Val=zeros(nPop,1); % 目标函数值
for i=1:nPop % 遍历每个个体mutant_Val(i)=fobj(mutant_Position(i,:),input_train,output_train,input_test,output_test); % 计算个体目标函数值
end
% 子代种群初始化
child_Position=init_individual(lb,ub,nVar,nPop); % 随机初始化位置
child_Val=zeros(nPop,1); % 目标函数值
for i=1:nPop % 遍历每个个体child_Val(i)=fobj(child_Position(i,:),input_train,output_train,input_test,output_test); % 计算个体目标函数值
end
%% 确定父代种群中的Alpha,Beta,Delta狼
[~,sort_index]=sort(parent_Val); % 父代种群目标函数值排序
parent_Alpha_Position=parent_Position(sort_index(1),:); % 确定父代Alpha狼
parent_Alpha_Val=parent_Val(sort_index(1)); % 父代Alpha狼目标函数值
parent_Beta_Position=parent_Position(sort_index(2),:); % 确定父代Beta狼
parent_Delta_Position=parent_Position(sort_index(3),:); % 确定父代Delta狼
%% 迭代开始
BestCost=zeros(1,MaxIt);
BestCost(1)=parent_Alpha_Val;
for it=1:MaxIta=2-it*((2)/MaxIt); % 对每一次迭代,计算相应的a值,a decreases linearly fron 2 to 0% 更新父代个体位置for par=1:nPop % 遍历父代个体for var=1:nVar % 遍历每个维度            % Alpha狼Huntingr1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]            A1=2*a*r1-a; % 计算系数AC1=2*r2; % 计算系数CD_alpha=abs(C1*parent_Alpha_Position(var)-parent_Position(par,var));X1=parent_Alpha_Position(var)-A1*D_alpha;% Beta狼Huntingr1=rand();r2=rand();            A2=2*a*r1-a; % 计算系数AC2=2*r2; % 计算系数CD_beta=abs(C2*parent_Beta_Position(var)-parent_Position(par,var));X2=parent_Beta_Position(var)-A2*D_beta;% Delta狼Huntingr1=rand();r2=rand();A3=2*a*r1-a; % 计算系数AC3=2*r2; % 计算系数CD_delta=abs(C3*parent_Delta_Position(var)-parent_Position(par,var));X3=parent_Delta_Position(var)-A3*D_delta;% 位置更新,防止越界X=(X1+X2+X3)/3;X=max(X,lb(var));X=min(X,ub(var));parent_Position(par,var)=X;endparent_Val(par)=fobj(parent_Position(par,:),input_train,output_train,input_test,output_test); % 计算个体目标函数值end% 产生变异(中间体)种群for mut=1:nPopA=randperm(nPop); % 个体顺序重新随机排列A(A==i)=[]; % 当前个体所排位置腾空(产生变异中间体时当前个体不参与)a=A(1);b=A(2);c=A(3);beta=unifrnd(beta_min,beta_max,VarSize); % 随机产生缩放因子y=parent_Position(a)+beta.*(parent_Position(b)-parent_Position(c)); % 产生中间体% 防止中间体越界y=max(y,lb);y=min(y,ub);mutant_Position(mut,:)=y;end% 产生子代种群,交叉操作 Crossoverfor child=1:nPopx=parent_Position(child,:);y=mutant_Position(child,:);z=zeros(size(x)); % 初始化一个新个体j0=randi([1,numel(x)]); % 产生一个伪随机数,即选取待交换维度编号???for var=1:numel(x) % 遍历每个维度if var==j0 || rand<=pCR % 如果当前维度是待交换维度或者随机概率小于交叉概率z(var)=y(var); % 新个体当前维度值等于中间体对应维度值elsez(var)=x(var); % 新个体当前维度值等于当前个体对应维度值endendchild_Position(child,:)=z; % 交叉操作之后得到新个体child_Val(child)=fobj(z,input_train,output_train,input_test,output_test); % 新个体目标函数值end% 父代种群更新for par=1:nPopif child_Val(par)<parent_Val(par) % 如果子代个体优于父代个体parent_Val(par)=child_Val(par); % 更新父代个体endend% 确定父代种群中的Alpha,Beta,Delta狼[~,sort_index]=sort(parent_Val); % 父代种群目标函数值排序parent_Alpha_Position=parent_Position(sort_index(1),:); % 确定父代Alpha狼parent_Alpha_Val=parent_Val(sort_index(1)); % 父代Alpha狼目标函数值parent_Beta_Position=parent_Position(sort_index(2),:); % 确定父代Beta狼parent_Delta_Position=parent_Position(sort_index(3),:); % 确定父代Delta狼BestCost(it)=parent_Alpha_Val;
end
bestc=parent_Alpha_Position(1,1);
bestg=parent_Alpha_Position(1,2);
%% 图示寻优过程
plot(BestCost);
xlabel('Iteration');
ylabel('Best Val');
grid on;
%% 利用回归预测分析最佳的参数进行SVM网络训练
cmd_cs_svr=['-s 3 -t 2',' -c ',num2str(bestc),' -g ',num2str(bestg)];
model_cs_svr=svmtrain(output_train,input_train,cmd_cs_svr); % SVM模型训练
%% SVM网络回归预测
[output_test_pre,~]=svmpredict(output_test,input_test,model_cs_svr); % SVM模型预测及其精度
test_pre=mapminmax('reverse',output_test_pre',rule2);
test_pre = test_pre';
function x=init_individual(xlb,xub,dim,sizepop)
% 参数初始化函数
% lb:参数下界,行向量
% ub:参数上界,行向量
% dim:参数维度
% sizepop 种群规模
% x:返回sizepop*size(lb,2)的参数矩阵
xRange=repmat((xub-xlb),[sizepop,1]);
xLower=repmat(xlb,[sizepop,1]);
x=rand(sizepop,dim).*xRange+xLower;
%% SVR_fitness -- objective function
function fitness=fobj(cv,input_train,output_train,input_test,output_test)
% cv为长度为2的横向量,即SVR中参数c和v的值cmd = ['-s 3 -t 2',' -c ',num2str(cv(1)),' -g ',num2str(cv(2))];
model=svmtrain(output_train,input_train,cmd); % SVM模型训练
[~,fitness]=svmpredict(output_test,input_test,model); % SVM模型预测及其精度
fitness=fitness(2); % 以平均均方误差MSE作为优化的目标函数值
clear
clc
close all
load wndspd % 示例数据为风速(时间序列)数据,共144个样本
%% HGWO-SVR
% 训练/测试数据准备(用前3天预测后一天),用前100天做训练数据
input_train(1,:)=wndspd(1:97);
input_train(2,:)=wndspd(2:98);
input_train(3,:)=wndspd(3:99);
output_train=[wndspd(4:100)]';
input_test(1,:)=wndspd(101:end-3);
input_test(2,:)=wndspd(102:end-2);
input_test(3,:)=wndspd(103:end-1);
output_test=(wndspd(104:end))';
para=[30,500,0.2,0.8,0.2];
[bestc,bestg,test_pre]=my_HGWO_SVR(para,input_train',output_train',input_test',output_test');
%% 预测结果图
err_pre=output_test'-test_pre;
figure('Name','测试数据残差图')
set(gcf,'unit','centimeters','position',[0.5,5,30,5])
plot(err_pre,'*-');
figure('Name','原始-预测图')
plot(test_pre,'*r-');hold on;plot(output_test,'bo-');
legend('预测','原始',0)
set(gcf,'unit','centimeters','position',[0.5,13,30,5])
toc

参考文章:Aijun Zhu, Chuanpei Xu, Zhi Li, Jun Wu, and Zhenbing Liu. Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC. Journal of Systems Engineering and Electronics Vol. 26, No. 2, April 2015, pp.317–328.
文章地址:http://ieeexplore.ieee.org/document/7111168/

(广告)欢迎扫描关注微信公众号:Genlovhyy的数据小站(Gnelovy212)

这里写图片描述

这篇关于混合灰狼优化(HGWO,DE-GWO)算法matlab源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136697

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、