【数据结构】详解二叉搜索树及其实现

2024-09-04 17:36

本文主要是介绍【数据结构】详解二叉搜索树及其实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:

二叉搜索树是红黑树等的前身,掌握其操作和性质很重要。总结自用and分享。


目录

一、基本概念

二、其常见操作及其实现

1.定义节点

2.查找元素 

 3.插入元素

4.删除元素【难点】

 三、性质分析


一、基本概念

        如下所示:对于所有节点都满足该性质:子树上所有节点的值都小于该节点的值。对于每个节点,右子树上所有节点的值都大于该节点的值。每个节点的左子树和右子树也是一个二叉搜索树。

其也叫二叉排序树,对其进行中序遍历可以得到排好序的序列。

二、其常见操作及其实现

1.定义节点

public class BinarySearchTree {private TreeNode root = null;//根节点// 定义节点class TreeNode {int val;TreeNode left;TreeNode right;public TreeNode(int val) {this.val = val;}
}

2.查找元素 

思想:

运用一个递归的思想:

1.先看看根节点是不是该元素,是的话,直接当前节点。

2.若不是,判断其位置,若该元素比根大,那就去右子树找(跳到1)。

3.若该元素比根小,那就去左子树找(跳到1)。

4.若遍历完所有节点都找不到,返回null。

代码实现:

public TreeNode search(int val) {TreeNode curRoot = root;//当前的双亲节点while (curRoot != null) {if (curRoot.val == val) {return curRoot;} else if (curRoot.val > val) {curRoot = curRoot.left;} else {curRoot = curRoot.right;}}return null;}

 3.插入元素

注意:二叉树的插入是不会破坏原有的结构的,插入元素,总是能找到合适的叶子节点插入,你们可以画图感受一下。

思想:

1.若该树为空,直接插入。

2.若树不为空:根据二叉树的性质,找到它的容身之处的双亲节点。

3.找到双亲节点之后,若比双亲节点大,插入其右边,若比双亲节点小,插入其左边。

代码实现:

    // 2.插入元素public boolean insert(int val) {// 如果根节点为空,直接插入,返回trueif (root == null) {root = new TreeNode(val);return true;}TreeNode cur = root;TreeNode parent = null;while (cur != null) {if (val == cur.val) {System.out.println("值为" + val + "的节点已经存在");return false;} else if (val > cur.val) {parent = cur;cur = cur.right;} else {parent = cur;cur = cur.left;}}// 抵达该位置时,已经找到合适的插入位置的双亲节点:parent// 要判断一下插入哪一边if (val > parent.val) {parent.right = new TreeNode(val);} else {parent.left = new TreeNode(val);}return true;}

4.删除元素【难点】

注意:刚说的插入元素不会破坏原有的树结构,但是删除元素就可能不得不破坏原有的树结构了,毕竟要把某个在中间的元素搬走...

a:初步思路:

    先找到该节点和其双亲节点,若找不到该节点,返回false。若找到了该节点,再根据情况进行删除调整。

 public boolean remove(int val) {TreeNode cur = root;TreeNode parent = null;while (cur != null) {if (cur.val < val) {parent = cur;cur = cur.right;} else if (cur.val > val) {parent = cur;cur = cur.left;} else {//找到要删除的元素和其双亲节点了removeNode(parent, cur);return true;}}System.out.println("删除失败,没找到值为"+val+"的节点");return false;}

 b:删除:(难点)

  1. 删除叶子节点:直接删除。
  2. 删除只有一边子节点的节点:用子节点替代该节点。(可涵盖情况1)
  3. 删除有两个子节点的节点【难点所在】:找到该节点的中序后继节点,用它的值替换被删除节点的值,然后删除该中序后继节点,并把该中序后继节点的子节点继承过去。

 再捋一下删除的情况:

     情况1、2: 我们找到了要删除的节点和其双亲节点。上述的情况2是可以包含情况1的:叶子节点也可以视为只有一边子节点(实际是null)的节点,然后子节点(实际是null),替代原本的节点。但是有一种情况我们要特殊处理,那就是要删除的节点是根节点时(此时对parent修改,只是流动了parent,影响不了root),我们需要直接拿到root去修改指向。

      情况3: 删除有两个子节点的节点【难点所在】

      找到要删除节点的右子树的最左节点,我们因为是最左节点,该节点肯定没有左子树了。

        我们把最左节点的值直接覆盖到要删除的节点,原因:最左节点是要删除节点的右子树里最小的,把它放在要删除的节点处,既可以满足,右子树中所有元素比节点大,也可以满足本来左子树中所有元素比节点小。(天然,右子树中任一元素大于左子树中的)

        善后阶段:最左节点的值已经被拿去,应该要删掉。这时候就回到情况1、2的问题了,且最左节点肯定不是头结点,处理起来也更简单。

private void removeNode(TreeNode parent, TreeNode cur) {// 情况1:要删除的节点没有左子节点if (cur.left == null) {// 如果要删除的节点是根节点,则直接将根节点指向其右子节点if (cur == root) {root = cur.right;} else if (cur == parent.left) {// 如果要删除的节点是其父节点的左子节点,则更新父节点的左指针parent.left = cur.right;} else {// 如果要删除的节点是其父节点的右子节点,则更新父节点的右指针parent.right = cur.right;}}// 情况2:要删除的节点没有右子节点else if (cur.right == null) {// 如果要删除的节点是根节点,则直接将根节点指向其左子节点if (cur == root) {root = cur.left;} else if (cur == parent.left) {// 如果要删除的节点是其父节点的左子节点,则更新父节点的左指针parent.left = cur.left;} else {// 如果要删除的节点是其父节点的右子节点,则更新父节点的右指针parent.right = cur.left;}}// 情况3:要删除的节点有左右子节点else {// 找到要删除节点的右子树中的最左(最小)节点TreeNode t = cur.right;TreeNode tp = cur;while (t.left != null) {tp = t;t = t.left;}// 将最左节点的值赋值给要删除的节点cur.val = t.val;// 删除最左节点,更新其父节点的左指针或右指针if (tp.left == t) {tp.left = t.right;} else {tp.right = t.right;}}}

 三、性质分析

        由于二叉搜索树的特点,平均情况下,插入、查找和删除操作的时间复杂度都是 O(log⁡n)。但是,如果二叉搜索树退化成一条链表(例如插入有序数据),最坏情况下,操作时间复杂度会降到 O(n)。为了避免这种情况,实际应用中常使用平衡二叉搜索树(如AVL树、红黑树等)。

这篇关于【数据结构】详解二叉搜索树及其实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136578

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo