ETL数据集成丨SQLServer到Doris的无缝数据同步策略

2024-09-04 13:52

本文主要是介绍ETL数据集成丨SQLServer到Doris的无缝数据同步策略,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在现代企业数据架构中,数据整合是至关重要的一个环节,它不仅关乎数据的准确性与一致性,还直接影响到数据分析的有效性和业务决策的精确性。Doris(原名 Palo)与 Hive 是两大在大数据处理领域内广泛应用的数据存储与分析系统,它们各有千秋,适用于不同的场景。将Doris数据整合至Hive数据库,旨在融合两者的优势,构建更为强大、灵活的数据分析平台,以支撑复杂多变的业务需求。

Doris与Hive的特点对比

Doris是一个高性能的MPP(大规模并行处理)数据库,专为OLAP(在线分析处理)设计,擅长处理复杂的分析查询,提供低延迟的即席查询能力。其分布式架构、列式存储以及先进的索引机制,使得在海量数据上进行亚秒级响应成为可能。Doris还支持实时数据导入,非常适合实时分析场景。

相比之下,Hive则起源于Hadoop生态系统,最初作为SQL接口被设计来处理批处理式的数据分析任务,适合处理PB级别的静态数据仓库应用。Hive通过HDFS存储数据,利用MapReduce或Tez等执行引擎进行计算,虽然在交互式查询性能上可能不如Doris,但其生态丰富、兼容SQL标准,且易于与Hadoop生态内的其他组件集成,如Spark、HBase等,提供了强大的数据处理和管理能力。

Doris与Hive同步方式

Doris与Hive作为大数据处理领域中两个重要的数据仓库系统,它们在数据分析、报表生成以及大规模数据处理场景中扮演着核心角色。尽管两者都旨在提供高效的数据存储与查询能力,但它们的设计理念、架构特点及应用场景各有侧重。因此,在实际应用中,实现Doris与Hive之间的数据同步不仅能够充分发挥两者的优势,还能促进数据资源的有效整合与利用。

Doris与Hive之间的数据同步策略应根据实际应用场景、数据量大小、实时性要求以及资源条件综合考虑。直接导出导入适用于小型项目或一次性迁移;而借助中间件、ETL工具或自定义脚本则能更好地应对大规模、实时性需求;利用系统间的桥接服务,则是在保持数据源独立性的同时,实现跨系统查询的有效途径。每种方法都有其优势与局限,关键在于合理选择与灵活应用,以达到数据同步的最佳效果。

图片 1

借助ETLCloud工具实现Doris数据同步至Hive数据库演示

通过对组件的拖拉拽以及配置,能快速构建数据整合通道。

流程设计

图片 7

库表输入组件配置

选中Doris数据源并选中要读取数据所在的表

图片 2

图片 3

图片 4

Hive输出节点组件配置

Hive输出节点是针对Hive数据库写入数据的组件,大大增加了数据传输到Hive的效率。

图片 5

图片 6

流程运行结果

轻松同步100W的数据量。

图片 8

除了最基本的同结构表同步数据,ETLCloud还提供了非常丰富的数据转换、运算组件来应对同步的各种情况,比如当上述数据源的表字段不一致的话,可以在中间加入字段值映射组件来进行两张表的字段映射:

图片 11

而如果想要目标表多一个字段并且赋予一个由其他两个字段进行数学运算得出的值,还可以使用字段值计算组件。

图片 12

最后

在各种数据源之间进行数据迁移,选择合适的工具能够高效地解决问题。ETLCloud 作为一款高效的数据迁移工具,能快速把Doris的海量数据同步至Hive数据仓库,无论是数据分析,还是要对数据进行转换处理,平台都有针对性的功能、组件,帮助提升数据管理的效率和效果。

这篇关于ETL数据集成丨SQLServer到Doris的无缝数据同步策略的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136187

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

SQL中的外键约束

外键约束用于表示两张表中的指标连接关系。外键约束的作用主要有以下三点: 1.确保子表中的某个字段(外键)只能引用父表中的有效记录2.主表中的列被删除时,子表中的关联列也会被删除3.主表中的列更新时,子表中的关联元素也会被更新 子表中的元素指向主表 以下是一个外键约束的实例展示

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

如何去写一手好SQL

MySQL性能 最大数据量 抛开数据量和并发数,谈性能都是耍流氓。MySQL没有限制单表最大记录数,它取决于操作系统对文件大小的限制。 《阿里巴巴Java开发手册》提出单表行数超过500万行或者单表容量超过2GB,才推荐分库分表。性能由综合因素决定,抛开业务复杂度,影响程度依次是硬件配置、MySQL配置、数据表设计、索引优化。500万这个值仅供参考,并非铁律。 博主曾经操作过超过4亿行数据

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置