分类预测|基于麻雀优化正则化极限学习机的数据分类预测Matlab程序SSA-RELM 多特征输入多类别输出

本文主要是介绍分类预测|基于麻雀优化正则化极限学习机的数据分类预测Matlab程序SSA-RELM 多特征输入多类别输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类预测|基于麻雀优化正则化极限学习机的数据分类预测Matlab程序SSA-RELM 多特征输入多类别输出

文章目录

  • 一、基本原理
      • 1. 数据准备
      • 2. RELM模型建立
      • 3. SSA优化RELM参数
      • 4. 模型训练
      • 5. 模型评估
      • 6. 结果分析与应用
      • 原理总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

分类预测|基于麻雀优化正则化极限学习机的数据分类预测Matlab程序SSA-RELM 多特征输入多类别输出

一、基本原理

SSA-RELM结合了麻雀搜索算法(SSA)和正则化极限学习机(RELM)来优化分类预测任务。以下是详细的流程和原理:

1. 数据准备

  • 数据收集与预处理:获取并处理数据,包括清洗、特征选择和标准化。
  • 数据划分:将数据分为训练集和测试集,用于模型训练和评估。

2. RELM模型建立

  • 定义模型:设置正则化极限学习机(RELM)的基本结构,包含输入层、隐含层和输出层。隐含层的权重和偏置是随机生成的,训练过程中主要优化输出层的权重。
  • 正则化设置:使用正则化技术来防止过拟合,确保模型在测试集上的良好性能。

3. SSA优化RELM参数

  • 初始化麻雀群体:在参数空间中随机生成多个麻雀的位置,每个位置代表一组RELM的超参数(如正则化参数、隐层神经元数目等)。
  • 定义适应度函数:通常使用交叉验证的分类精度或损失函数值作为适应度函数,评估每组参数的性能。
  • 麻雀行为模拟
    • 觅食行为:模拟麻雀寻找食物的行为,根据适应度函数更新麻雀的位置。
    • 社会行为:模仿麻雀群体中的社会行为,调整个体位置以向更优解靠近。
  • 迭代优化:通过多次迭代,麻雀不断调整位置以找到最佳的RELM参数。

4. 模型训练

  • 应用优化参数:将通过SSA得到的最佳参数应用到RELM中。
  • 训练过程:使用训练集数据训练RELM,优化模型的输出权重以最小化损失函数。

5. 模型评估

  • 在测试集上评估:使用优化后的RELM模型对测试集进行分类预测,评估模型的性能指标,如准确率、F1分数、AUC等。
  • 性能比较:对比使用SSA优化前后的RELM模型性能,验证优化效果。

6. 结果分析与应用

  • 分析预测结果:分析模型预测结果,识别关键特征和预测错误的原因。
  • 应用模型:将优化后的模型应用于实际分类任务,进行部署和调整。

原理总结

  • SSA(麻雀优化算法):通过模仿麻雀的觅食和社会行为,在参数空间中寻找最优解,以优化模型性能。
  • RELM(正则化极限学习机):通过随机化隐层权重和优化输出层权重来实现高效的分类预测,结合正则化技术来提高泛化能力。
  • 结合方法:SSA优化RELM的超参数,通过全局搜索能力找到提升RELM性能的最佳参数,从而提高分类预测的准确性和稳定性。

二、实验结果

SSA-RELM分类结果
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于分类预测|基于麻雀优化正则化极限学习机的数据分类预测Matlab程序SSA-RELM 多特征输入多类别输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135374

相关文章

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt