分类预测|基于麻雀优化正则化极限学习机的数据分类预测Matlab程序SSA-RELM 多特征输入多类别输出

本文主要是介绍分类预测|基于麻雀优化正则化极限学习机的数据分类预测Matlab程序SSA-RELM 多特征输入多类别输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类预测|基于麻雀优化正则化极限学习机的数据分类预测Matlab程序SSA-RELM 多特征输入多类别输出

文章目录

  • 一、基本原理
      • 1. 数据准备
      • 2. RELM模型建立
      • 3. SSA优化RELM参数
      • 4. 模型训练
      • 5. 模型评估
      • 6. 结果分析与应用
      • 原理总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

分类预测|基于麻雀优化正则化极限学习机的数据分类预测Matlab程序SSA-RELM 多特征输入多类别输出

一、基本原理

SSA-RELM结合了麻雀搜索算法(SSA)和正则化极限学习机(RELM)来优化分类预测任务。以下是详细的流程和原理:

1. 数据准备

  • 数据收集与预处理:获取并处理数据,包括清洗、特征选择和标准化。
  • 数据划分:将数据分为训练集和测试集,用于模型训练和评估。

2. RELM模型建立

  • 定义模型:设置正则化极限学习机(RELM)的基本结构,包含输入层、隐含层和输出层。隐含层的权重和偏置是随机生成的,训练过程中主要优化输出层的权重。
  • 正则化设置:使用正则化技术来防止过拟合,确保模型在测试集上的良好性能。

3. SSA优化RELM参数

  • 初始化麻雀群体:在参数空间中随机生成多个麻雀的位置,每个位置代表一组RELM的超参数(如正则化参数、隐层神经元数目等)。
  • 定义适应度函数:通常使用交叉验证的分类精度或损失函数值作为适应度函数,评估每组参数的性能。
  • 麻雀行为模拟
    • 觅食行为:模拟麻雀寻找食物的行为,根据适应度函数更新麻雀的位置。
    • 社会行为:模仿麻雀群体中的社会行为,调整个体位置以向更优解靠近。
  • 迭代优化:通过多次迭代,麻雀不断调整位置以找到最佳的RELM参数。

4. 模型训练

  • 应用优化参数:将通过SSA得到的最佳参数应用到RELM中。
  • 训练过程:使用训练集数据训练RELM,优化模型的输出权重以最小化损失函数。

5. 模型评估

  • 在测试集上评估:使用优化后的RELM模型对测试集进行分类预测,评估模型的性能指标,如准确率、F1分数、AUC等。
  • 性能比较:对比使用SSA优化前后的RELM模型性能,验证优化效果。

6. 结果分析与应用

  • 分析预测结果:分析模型预测结果,识别关键特征和预测错误的原因。
  • 应用模型:将优化后的模型应用于实际分类任务,进行部署和调整。

原理总结

  • SSA(麻雀优化算法):通过模仿麻雀的觅食和社会行为,在参数空间中寻找最优解,以优化模型性能。
  • RELM(正则化极限学习机):通过随机化隐层权重和优化输出层权重来实现高效的分类预测,结合正则化技术来提高泛化能力。
  • 结合方法:SSA优化RELM的超参数,通过全局搜索能力找到提升RELM性能的最佳参数,从而提高分类预测的准确性和稳定性。

二、实验结果

SSA-RELM分类结果
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于分类预测|基于麻雀优化正则化极限学习机的数据分类预测Matlab程序SSA-RELM 多特征输入多类别输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135374

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。