本文主要是介绍概率学 笔记一 - 概率 - 随机变量 - 期望 - 方差 - 标准差(也不知道会不会有二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
概率不用介绍,它的定义可以用一个公式写出:
事件发生的概率 = 事件可能发生的个数 结果的总数 事件发生的概率=\cfrac{事件可能发生的个数}{结果的总数} 事件发生的概率=结果的总数事件可能发生的个数
比如一副标准的 52 张的扑克牌,每张牌都是唯一的,所以,抽一张牌时,每张牌的概率都是 1/52。但是有人就会说了,A 点明明有四张,怎么会是 1/52 的概率。
这就需要精准的指出我们计算概率时,到底什么是样本,什么是事件。
样本、事件
在一次统计中,一个可能的结果是样本点,样本点应该是唯一的。而事件可能是耦合的,比如扑克牌中,黑桃 A 就是一个样本点,大小王是两个样本点,但是 A 点就是事件,因为 A 有四张。
事件是包含样本点或排除样本点的,比如抽中 A 的概率,这个概率就包含四个样本点,分别是四张 A。如果是不抽中小丑的概率,这个概率就是排除大小王两个样本点。
- 样本点:一个可能的结果。
- 事件:实验的一个成果。
- 样本空间:所有样本的集合。(上面例子即整整一副扑克牌)
一个特殊的点是,骰子和硬币两面的概率严谨计算的话,他们的各个样本点的概率不一致,因为骰子和硬币是不规则的。不过后文的例子都会默认忽略,理想的认为骰子和硬币每个样本点的概率一致。
随机变量
随机变量是实验结果的抽象,一般用 X 表示。它用来描述实验结果的可能 数值。
在扑克牌中,每张牌天然具有点数,我们可以借用牌面的点数进行一些列的概率计算,但是掷硬币判断正反面呢?正反面不具有数值性,但是我们把正面记作 1 ,反面记作 0 来进行后续的数学计算。在进行这样的抽象之后,数值 0 和 1 就组成掷硬币实验的随机变量。
也就是:
- 随机事件抽象为数值
- 数值组成随机变量
当然这个数值是你自定义的,正面可以是 500,反面可以是 -1000,这和逻辑无关,随机变量的值是任意的。
见 https://www.shuxuele.com/data/random-variables.html
期望 μ
期望 μ (希腊语 mu 读作 /mjuː/),为了区别于“期望”本身的意义,在数学上更准确的说法是数学期望。期望用来描述一组随机值的均值,某种程度上也可以叫做均值。但是在概率中,期望的均值是根据概率加权求平均,而不是直接用事件求平均。
期望可以反应概率的平均结果,比如掷骰子,掷足够多次之后,累计点数除以掷的次数,就是骰子点数的期望。
期望的计算方式是:
μ = Σ x p μ = \Sigma{xp} μ=Σxp
其中, Σ \Sigma Σ 读作 Sigma,用于求和; x x x 代表事件的值;p(Probability)代表概率。
显然一个骰子点数的期望就是:
μ = Σ x p = 1 ⋅ 1 6 + 2 ⋅ 1 6 + 3 ⋅ 1 6 + 4 ⋅ 1 6 + 5 ⋅ 1 6 + 6 ⋅ 1 6 μ = \Sigma{xp} = 1 \cdot \cfrac{1}{6} + 2 \cdot \cfrac{1}{6} + 3 \cdot \cfrac{1}{6} + 4 \cdot \cfrac{1}{6} + 5 \cdot \cfrac{1}{6} + 6 \cdot \cfrac{1}{6} μ=Σxp=1⋅61+2⋅61+3⋅61+4⋅61+5⋅61+6⋅61
方差 Var(X)
方差用来形容事件的离散程度,这个值越大,说明事件概率离散程度越高,也就是越不稳定。
方差的公式是:
V a r ( X ) = Σ x 2 p − μ 2 Var(X) = \Sigma{x^2p} - μ^2 Var(X)=Σx2p−μ2
如果一个事件必定发生,那么方差就是 0。
标准差 σ
标准差 σ (sigma)就是方差的的平方根。因为方差在计算时使用的平方,标准差的值相比方差可读性稍微高一点,比较靠近期望。
计算如:
σ = V a r ( X ) σ = \sqrt{Var(X)} σ=Var(X)
小练习
同时掷四个硬币,记硬币正面为 1,反面为 0,求硬币为正面的标准差。
解:
每个硬币两种可能性,正面和反面,四枚硬币掷出的事件有:
2 4 = 16 2^4=16 24=16
取每次支持正面朝上的个数做随机变量 X,有:
X ∈ { 0 , 1 , 2 , 3 , 4 } X \isin \{0,1,2,3,4\} X∈{0,1,2,3,4}
使用组合思想,每次掷出有 m 个正面的次数有 C 4 m C_4^m C4m,概率 P(X) 有:
P ( X ) = C 4 X 16 P(X) = \cfrac{C_4^X}{16} P(X)=16C4X
期望为:
μ = Σ x p = Σ x C 4 x 16 = 2 \mu = \Sigma{xp}=\Sigma{ x \cfrac{C_4^x}{16}} = 2 μ=Σxp=Σx16C4x=2
方差为:
V a r ( x ) = Σ x 2 c 4 x 16 − μ 2 = 5 − 4 = 1 Var(x) = \Sigma{ x^2\cfrac{c_4^x}{16} - \mu^2 } = 5 - 4 = 1 Var(x)=Σx216c4x−μ2=5−4=1
取方差算术平方根结果可得到标准差,答案是 1。
参考
- 概率 – 数学乐
这篇关于概率学 笔记一 - 概率 - 随机变量 - 期望 - 方差 - 标准差(也不知道会不会有二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!