概率学 笔记一 - 概率 - 随机变量 - 期望 - 方差 - 标准差(也不知道会不会有二)

2024-09-04 04:44

本文主要是介绍概率学 笔记一 - 概率 - 随机变量 - 期望 - 方差 - 标准差(也不知道会不会有二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概率不用介绍,它的定义可以用一个公式写出:

事件发生的概率 = 事件可能发生的个数 结果的总数 事件发生的概率=\cfrac{事件可能发生的个数}{结果的总数} 事件发生的概率=结果的总数事件可能发生的个数

比如一副标准的 52 张的扑克牌,每张牌都是唯一的,所以,抽一张牌时,每张牌的概率都是 1/52。但是有人就会说了,A 点明明有四张,怎么会是 1/52 的概率。

这就需要精准的指出我们计算概率时,到底什么是样本,什么是事件。

样本、事件

在一次统计中,一个可能的结果是样本点,样本点应该是唯一的。而事件可能是耦合的,比如扑克牌中,黑桃 A 就是一个样本点,大小王是两个样本点,但是 A 点就是事件,因为 A 有四张。

事件是包含样本点或排除样本点的,比如抽中 A 的概率,这个概率就包含四个样本点,分别是四张 A。如果是不抽中小丑的概率,这个概率就是排除大小王两个样本点。

  • 样本点:一个可能的结果。
  • 事件:实验的一个成果。
  • 样本空间:所有样本的集合。(上面例子即整整一副扑克牌)

一个特殊的点是,骰子和硬币两面的概率严谨计算的话,他们的各个样本点的概率不一致,因为骰子和硬币是不规则的。不过后文的例子都会默认忽略,理想的认为骰子和硬币每个样本点的概率一致。

随机变量

随机变量是实验结果的抽象,一般用 X 表示。它用来描述实验结果的可能 数值

在扑克牌中,每张牌天然具有点数,我们可以借用牌面的点数进行一些列的概率计算,但是掷硬币判断正反面呢?正反面不具有数值性,但是我们把正面记作 1 ,反面记作 0 来进行后续的数学计算。在进行这样的抽象之后,数值 0 和 1 就组成掷硬币实验的随机变量。

也就是:

  • 随机事件抽象为数值
  • 数值组成随机变量

当然这个数值是你自定义的,正面可以是 500,反面可以是 -1000,这和逻辑无关,随机变量的值是任意的。

见 https://www.shuxuele.com/data/random-variables.html

期望 μ

期望 μ (希腊语 mu 读作 /mjuː/),为了区别于“期望”本身的意义,在数学上更准确的说法是数学期望。期望用来描述一组随机值的均值,某种程度上也可以叫做均值。但是在概率中,期望的均值是根据概率加权求平均,而不是直接用事件求平均。

期望可以反应概率的平均结果,比如掷骰子,掷足够多次之后,累计点数除以掷的次数,就是骰子点数的期望。

期望的计算方式是:

μ = Σ x p μ = \Sigma{xp} μ=Σxp

其中, Σ \Sigma Σ 读作 Sigma,用于求和; x x x 代表事件的值;p(Probability)代表概率。

显然一个骰子点数的期望就是:

μ = Σ x p = 1 ⋅ 1 6 + 2 ⋅ 1 6 + 3 ⋅ 1 6 + 4 ⋅ 1 6 + 5 ⋅ 1 6 + 6 ⋅ 1 6 μ = \Sigma{xp} = 1 \cdot \cfrac{1}{6} + 2 \cdot \cfrac{1}{6} + 3 \cdot \cfrac{1}{6} + 4 \cdot \cfrac{1}{6} + 5 \cdot \cfrac{1}{6} + 6 \cdot \cfrac{1}{6} μ=Σxp=161+261+361+461+561+661

方差 Var(X)

方差用来形容事件的离散程度,这个值越大,说明事件概率离散程度越高,也就是越不稳定。

方差的公式是:

V a r ( X ) = Σ x 2 p − μ 2 Var(X) = \Sigma{x^2p} - μ^2 Var(X)=Σx2pμ2

如果一个事件必定发生,那么方差就是 0。

标准差 σ

标准差 σ (sigma)就是方差的的平方根。因为方差在计算时使用的平方,标准差的值相比方差可读性稍微高一点,比较靠近期望。

计算如:

σ = V a r ( X ) σ = \sqrt{Var(X)} σ=Var(X)

小练习

同时掷四个硬币,记硬币正面为 1,反面为 0,求硬币为正面的标准差。

解:

每个硬币两种可能性,正面和反面,四枚硬币掷出的事件有:

2 4 = 16 2^4=16 24=16

取每次支持正面朝上的个数做随机变量 X,有:

X ∈ { 0 , 1 , 2 , 3 , 4 } X \isin \{0,1,2,3,4\} X{0,1,2,3,4}

使用组合思想,每次掷出有 m 个正面的次数有 C 4 m C_4^m C4m,概率 P(X) 有:

P ( X ) = C 4 X 16 P(X) = \cfrac{C_4^X}{16} P(X)=16C4X

期望为:

μ = Σ x p = Σ x C 4 x 16 = 2 \mu = \Sigma{xp}=\Sigma{ x \cfrac{C_4^x}{16}} = 2 μ=Σxp=Σx16C4x=2

方差为:

V a r ( x ) = Σ x 2 c 4 x 16 − μ 2 = 5 − 4 = 1 Var(x) = \Sigma{ x^2\cfrac{c_4^x}{16} - \mu^2 } = 5 - 4 = 1 Var(x)=Σx216c4xμ2=54=1

取方差算术平方根结果可得到标准差,答案是 1。

参考

  • 概率 – 数学乐

这篇关于概率学 笔记一 - 概率 - 随机变量 - 期望 - 方差 - 标准差(也不知道会不会有二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135027

相关文章

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓

忽略某些文件 —— Git 学习笔记 05

忽略某些文件 忽略某些文件 通过.gitignore文件其他规则源如何选择规则源参考资料 对于某些文件,我们不希望把它们纳入 Git 的管理,也不希望它们总出现在未跟踪文件列表。通常它们都是些自动生成的文件,比如日志文件、编译过程中创建的临时文件等。 通过.gitignore文件 假设我们要忽略 lib.a 文件,那我们可以在 lib.a 所在目录下创建一个名为 .gi

取得 Git 仓库 —— Git 学习笔记 04

取得 Git 仓库 —— Git 学习笔记 04 我认为, Git 的学习分为两大块:一是工作区、索引、本地版本库之间的交互;二是本地版本库和远程版本库之间的交互。第一块是基础,第二块是难点。 下面,我们就围绕着第一部分内容来学习,先不考虑远程仓库,只考虑本地仓库。 怎样取得项目的 Git 仓库? 有两种取得 Git 项目仓库的方法。第一种是在本地创建一个新的仓库,第二种是把其他地方的某个