【Datawhale X 李宏毅苹果书 AI夏令营】《深度学习详解》Task3 打卡

本文主要是介绍【Datawhale X 李宏毅苹果书 AI夏令营】《深度学习详解》Task3 打卡,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 学习目标
  • 一、优化策略
  • 二、模型偏差
  • 三、优化问题
  • 三、过拟合
    • 增加训练集
    • 给模型一些限制
  • 四、交叉验证
  • 五、不匹配
  • 总结


前言

本文是【Datawhale X 李宏毅苹果书 AI夏令营】的Task3学习笔记打卡。

学习目标

李宏毅老师对应视频课程:https://www.bilibili.com/video/BV1JA411c7VT?p=4
《深度学习详解》第二章主要介绍了训练模型时的优化方法。


一、优化策略

完成的作业如果在 Kaggle 上的结果不太好,虽然 Kaggle 上呈现的是测试数据的结果,但要先检查训练数据的损失。
看看模型在训练数据上面,有没有学起来,再去看测试的结果。

Kaggle 是一个全球知名的数据科学和机器学习竞赛平台,同时也是一个数据科学社区。它提供了各种与数据科学相关的资源,包括竞赛、数据集、代码共享、讨论论坛和学习资源。

在这里插入图片描述

二、模型偏差

模型偏差可能会影响模型训练,所以如果模型的灵活性不够大,可以增加更多特征,可以设一个更大的模型,可以用深度学习来增加模型的灵活性,这是第一个可以的解法。

在这里插入图片描述

三、优化问题

但是并不是训练的时候,损失大就代表一定是模型偏差,可能会遇到另外一个问题:优化做得不好。

在这里插入图片描述

一个建议判断模型偏差或者优化问题的方法,通过比较不同的模型来判断模型现在到底够不够大。

在这里插入图片描述

并不是所有的结果不好,都叫做过拟合。
在训练集上,20 层的网络损失其实是比较低的,56 层的网络损失是比较高的,如图 2.4(b) 所示,这代表 56 层的网络的优化没有做好,它的优化不给力。

在这里插入图片描述

这边给大家的建议是看到一个从来没有做过的问题,可以先跑一些比较小的、比较浅的网络,或甚至用一些非深度学习的方法,比如线性模型、支持向量机(Support Vector Machine,SVM),SVM 可能是比较容易做优化的,它们比较不会有优化失败的问题。

在这里插入图片描述

三、过拟合

为什么会有过拟合这样的情况呢?

如果模型它的自由度很大的话,它可以产生非常奇怪的曲线,导致训练集上的结果好,但是测试集上的损失很大。

在这里插入图片描述

怎么解决过拟合的问题呢,有两个可能的方向:

增加训练集

可以做数据增强(data augmentation,),这个方法并不算是使用了额外的数据。

在这里插入图片描述

给模型一些限制

全连接网络(fully-connected network)其实是一个比较有灵活性的架构,而卷积神经网络(Convolutional Neural Network,CNN)是一个比较有限制的架构。

在这里插入图片描述

  • 给模型比较少的参数。如果是深度学习的话,就给它比较少的神经元的数量。

  • 或者用比较少的特征,本来给 3 天的数据,改成用给两天的数据,其实结果就好了一些。

  • 还有别的方法,比如早停(early stopping)、正则化(regularization)和丢弃法(dropoutmethod)。

在这里插入图片描述

随着模型越来越复杂,训练损失可以越来越低,但测试时,当模型越来越复杂的时候,刚开始,测试损失会跟著下降,但是当复杂的程度,超过某一个程度以后,测试损失就会突然暴增了。

在这里插入图片描述

可以选一个中庸的模型,不是太复杂的,也不是太简单的,刚刚好可以在训练集上损失最低,测试损失最低。

四、交叉验证

比较合理选择模型的方法是把训练的数据分成两半,一部分称为训练集(training set),一部分是验证集(validation set)。

其实最好的做法,就是用验证损失,最小的直接挑就好了,不要管公开测试集的结果。在实现上,不太可能这么做,因为公开数据集的结果对模型的选择,可能还是会有些影响的。
理想上就用验证集挑就好,有过比较好的基线(baseline)算法以后,就不要再去动它了,就可以避免在测试集上面过拟合。

在这里插入图片描述

五、不匹配

真实曲线与预测曲线之间出现反常情况,这种错误的形式称为不匹配。

在这里插入图片描述

不匹配跟过拟合其实不同,一般的过拟合可以用搜集更多的数据来克服,但是不匹配是指训练集跟测试集的分布不同,训练集再增加其实也没有帮助了。

在这里插入图片描述


总结

《深度学习详解》的前两章到此就顺利看完了,本质上是对李宏毅老师《机器学习》课程的一个口语化文字记录,非常通俗易懂,后面还有更加有意思的内容。

这篇关于【Datawhale X 李宏毅苹果书 AI夏令营】《深度学习详解》Task3 打卡的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134837

相关文章

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Java中的JSONObject详解

《Java中的JSONObject详解》:本文主要介绍Java中的JSONObject详解,需要的朋友可以参考下... Java中的jsONObject详解一、引言在Java开发中,处理JSON数据是一种常见的需求。JSONObject是处理JSON对象的一个非常有用的类,它提供了一系列的API来操作J

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

HTML5中的Microdata与历史记录管理详解

《HTML5中的Microdata与历史记录管理详解》Microdata作为HTML5新增的一个特性,它允许开发者在HTML文档中添加更多的语义信息,以便于搜索引擎和浏览器更好地理解页面内容,本文将探... 目录html5中的Mijscrodata与历史记录管理背景简介html5中的Microdata使用M

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的

HTML5表格语法格式详解

《HTML5表格语法格式详解》在HTML语法中,表格主要通过table、tr和td3个标签构成,本文通过实例代码讲解HTML5表格语法格式,感兴趣的朋友一起看看吧... 目录一、表格1.表格语法格式2.表格属性 3.例子二、不规则表格1.跨行2.跨列3.例子一、表格在html语法中,表格主要通过< tab

Linux之计划任务和调度命令at/cron详解

《Linux之计划任务和调度命令at/cron详解》:本文主要介绍Linux之计划任务和调度命令at/cron的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux计划任务和调度命令at/cron一、计划任务二、命令{at}介绍三、命令语法及功能 :at

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

Java使用ANTLR4对Lua脚本语法校验详解

《Java使用ANTLR4对Lua脚本语法校验详解》ANTLR是一个强大的解析器生成器,用于读取、处理、执行或翻译结构化文本或二进制文件,下面就跟随小编一起看看Java如何使用ANTLR4对Lua脚本... 目录什么是ANTLR?第一个例子ANTLR4 的工作流程Lua脚本语法校验准备一个Lua Gramm

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字