大模型全量微调和LoRA微调详细说明,如何避免灾难性遗忘

2024-09-03 21:52

本文主要是介绍大模型全量微调和LoRA微调详细说明,如何避免灾难性遗忘,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在使用大模型进行微调时,特别是在语音识别、自然语言处理等任务中经常会遇到两个主要方法:全量微调和LoRA微调。全量微调涉及更新模型的所有参数,而LoRA(Low-Rank Adaptation)则专注于更新少量的参数来适应新的任务。这两种方法各有优缺点,并有不同的应用场景。

全量微调

1. 什么是全量微调?

全量微调是指在微调阶段,更新模型中所有参数。这个过程通常在大规模数据集上进行,以适应新的任务或改进性能。

2. 优点
  • 高灵活性:可以最大程度地优化模型以适应新任务。
  • 广泛应用:在很多场景下使用,已经被高度研究和优化。
3. 缺点
  • 高计算成本:需要更新所有参数,计算和存储成本较高。
  • 灾难性遗忘:在没有小心设计策略的情况下,模型可能会丢失原先在预训练阶段学到的信息。
4. 如何进行全量微调

以下是使用PyTorch进行全量微调的一个示例:

from transformers import BertTokenizer, BertForSequenceClassification, AdamW
from torch.utils.data import DataLoader
import torch# 加载预训练模型和tokenizer
model_name = 'bert-base-uncased'
model = BertForSequenceClassification.from_pretrained(model_name)
tokenizer = BertTokenizer.from_pretrained(model_name)# 假设你有一个数据集DataLoader
train_dataloader = DataLoader(...)# 定义优化器
optimizer = AdamW(model.parameters(), lr=2e-5)# 设置训练参数
num_epochs = 3# 训练循环
model.train()
for epoch in range(num_epochs):for batch in train_dataloader:inputs = tokenizer(batch['text'], padding=True, truncation=True, return_tensors="pt")labels = batch['labels']outputs = model(**inputs, labels=labels)loss = outputs.loss# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()

LoRA微调

1. 什么是LoRA微调?

LoRA微调是一种低秩适应方法,主要通过在特定的层和特定的尺寸上添加一些低秩矩阵,然后只更新这些低秩矩阵。它旨在减少微调过程中计算和存储成本。

2. 优点
  • 低计算成本:只更新少量参数,大大降低计算和存储需求。
  • 适用于资源受限的环境:特别是在嵌入式设备或移动设备上有用。
3. 缺点
  • 适应性较差:在某些复杂任务中,LoRA可能无法达到全量微调的性能。
  • 需要特殊设计:需要仔细选择哪些层和参数进行低秩适应。
4. 如何进行LoRA微调

以下是一个LoRA微调的示例:

import torch
import torch.nn as nn
from transformers import BertModel, BertTokenizerclass LoRAModule(nn.Module):def __init__(self, model, lora_rank=4):super(LoRAModule, self).__init__()self.lora_rank = lora_rankself.original_weight = model.classifier.weight.data.clone()self.rank_map = nn.Parameter(torch.randn(lora_rank, model.classifier.weight.size(1)))self.ranked_weight = Nonedef forward(self, x):if self.ranked_weight is None:self.ranked_weight = torch.mm(self.rank_map, self.original_weight)return torch.mm(x, self.ranked_weight.t())# 加载预训练模型
model_name = 'bert-base-uncased'
model = BertModel.from_pretrained(model_name)
tokenizer = BertTokenizer.from_pretrained(model_name)# 替换BERT模型中的classifier为LoRAModule
model.classifier = LoRAModule(model)# 假设你有一个数据集DataLoader
train_dataloader = DataLoader(...)# 定义优化器
optimizer = AdamW(model.parameters(), lr=2e-5)# 设置训练参数
num_epochs = 3# 训练循环
model.train()
for epoch in range(num_epochs):for batch in train_dataloader:inputs = tokenizer(batch['text'], padding=True, truncation=True, return_tensors="pt")labels = batch['labels']outputs = model(**inputs, labels=labels)loss = outputs.loss# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()

避免灾难性遗忘

灾难性遗忘是指模型在微调新任务时,丢失了在原始任务中学到的信息。为避免这一问题,可以使用以下策略:

1. 定期微调

使用小的学习率并进行多次微调,有助于模型逐步适应新任务,从而尽量保留原有知识。

2. 可调参数冻结

冻结部分模型参数,只微调部分特定层。通常,这些层是模型的后几层(高级特征层)。

for name, param in model.named_parameters():if "classifier" not in name:  # 只解冻分类头param.requires_grad = False

3. 蒙特卡罗Dropout

在训练过程中使用dropout可以帮助模型学习更具泛化性的特征。

4. 经验重放

混合原始任务的数据和新任务的数据,共同训练模型,以保留原始任务的信息。

5. 知识蒸馏

在微调过程中,将新任务学生模型的输出与原始任务教师模型的输出进行对比,从而引导模型保留原有任务的信息。

知识蒸馏示例代码:
import torch.nn.functional as F# 假设teacher_model是预训练模型,student_model是微调模型
teacher_model.eval()  # 教师模型不更新权重
alpha = 0.5  # 权重系数
T = 2  # 温度for epoch in range(num_epochs):for batch in train_dataloader:inputs = tokenizer(batch['text'], padding=True, truncation=True, return_tensors="pt")labels = batch['labels']student_outputs = student_model(**inputs, labels=labels)student_loss = student_outputs.losswith torch.no_grad():teacher_outputs = teacher_model(**inputs, labels=labels)distillation_loss = F.kl_div(F.log_softmax(student_outputs.logits / T, dim=1),F.softmax(teacher_outputs.logits / T, dim=1),reduction='batchmean') * (T ** 2)loss = alpha * student_loss + (1 - alpha) * distillation_loss# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()

总结

通过全量微调和LoRA微调,可以根据任务需求和资源限制选择合适的方法。全量微调适用于需要高灵活性和高性能的任务,而LoRA微调适用于计算资源有限的场景。为了避免灾难性遗忘,可以采取定期微调、冻结部分参数、使用蒙特卡罗Dropout、体验重放和知识蒸馏等策略。这些方法可以帮助模型在适应新任务的同时,保留原有的知识。

这篇关于大模型全量微调和LoRA微调详细说明,如何避免灾难性遗忘的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134154

相关文章

Goland debug失效详细解决步骤(合集)

《Golanddebug失效详细解决步骤(合集)》今天用Goland开发时,打断点,以debug方式运行,发现程序并没有断住,程序跳过了断点,直接运行结束,网上搜寻了大量文章,最后得以解决,特此在这... 目录Bug:Goland debug失效详细解决步骤【合集】情况一:Go或Goland架构不对情况二:

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL

Springboot 中使用Sentinel的详细步骤

《Springboot中使用Sentinel的详细步骤》文章介绍了如何在SpringBoot中使用Sentinel进行限流和熔断降级,首先添加依赖,配置Sentinel控制台地址,定义受保护的资源,... 目录步骤 1: 添加 Sentinel 依赖步骤 2: 配置 Sentinel步骤 3: 定义受保护的

Spring Boot Actuator使用说明

《SpringBootActuator使用说明》SpringBootActuator是一个用于监控和管理SpringBoot应用程序的强大工具,通过引入依赖并配置,可以启用默认的监控接口,... 目录项目里引入下面这个依赖使用场景总结说明:本文介绍Spring Boot Actuator的使用,关于Spri

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee