本文主要是介绍大模型全量微调和LoRA微调详细说明,如何避免灾难性遗忘,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
在使用大模型进行微调时,特别是在语音识别、自然语言处理等任务中经常会遇到两个主要方法:全量微调和LoRA微调。全量微调涉及更新模型的所有参数,而LoRA(Low-Rank Adaptation)则专注于更新少量的参数来适应新的任务。这两种方法各有优缺点,并有不同的应用场景。
全量微调
1. 什么是全量微调?
全量微调是指在微调阶段,更新模型中所有参数。这个过程通常在大规模数据集上进行,以适应新的任务或改进性能。
2. 优点
- 高灵活性:可以最大程度地优化模型以适应新任务。
- 广泛应用:在很多场景下使用,已经被高度研究和优化。
3. 缺点
- 高计算成本:需要更新所有参数,计算和存储成本较高。
- 灾难性遗忘:在没有小心设计策略的情况下,模型可能会丢失原先在预训练阶段学到的信息。
4. 如何进行全量微调
以下是使用PyTorch进行全量微调的一个示例:
from transformers import BertTokenizer, BertForSequenceClassification, AdamW
from torch.utils.data import DataLoader
import torch# 加载预训练模型和tokenizer
model_name = 'bert-base-uncased'
model = BertForSequenceClassification.from_pretrained(model_name)
tokenizer = BertTokenizer.from_pretrained(model_name)# 假设你有一个数据集DataLoader
train_dataloader = DataLoader(...)# 定义优化器
optimizer = AdamW(model.parameters(), lr=2e-5)# 设置训练参数
num_epochs = 3# 训练循环
model.train()
for epoch in range(num_epochs):for batch in train_dataloader:inputs = tokenizer(batch['text'], padding=True, truncation=True, return_tensors="pt")labels = batch['labels']outputs = model(**inputs, labels=labels)loss = outputs.loss# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()
LoRA微调
1. 什么是LoRA微调?
LoRA微调是一种低秩适应方法,主要通过在特定的层和特定的尺寸上添加一些低秩矩阵,然后只更新这些低秩矩阵。它旨在减少微调过程中计算和存储成本。
2. 优点
- 低计算成本:只更新少量参数,大大降低计算和存储需求。
- 适用于资源受限的环境:特别是在嵌入式设备或移动设备上有用。
3. 缺点
- 适应性较差:在某些复杂任务中,LoRA可能无法达到全量微调的性能。
- 需要特殊设计:需要仔细选择哪些层和参数进行低秩适应。
4. 如何进行LoRA微调
以下是一个LoRA微调的示例:
import torch
import torch.nn as nn
from transformers import BertModel, BertTokenizerclass LoRAModule(nn.Module):def __init__(self, model, lora_rank=4):super(LoRAModule, self).__init__()self.lora_rank = lora_rankself.original_weight = model.classifier.weight.data.clone()self.rank_map = nn.Parameter(torch.randn(lora_rank, model.classifier.weight.size(1)))self.ranked_weight = Nonedef forward(self, x):if self.ranked_weight is None:self.ranked_weight = torch.mm(self.rank_map, self.original_weight)return torch.mm(x, self.ranked_weight.t())# 加载预训练模型
model_name = 'bert-base-uncased'
model = BertModel.from_pretrained(model_name)
tokenizer = BertTokenizer.from_pretrained(model_name)# 替换BERT模型中的classifier为LoRAModule
model.classifier = LoRAModule(model)# 假设你有一个数据集DataLoader
train_dataloader = DataLoader(...)# 定义优化器
optimizer = AdamW(model.parameters(), lr=2e-5)# 设置训练参数
num_epochs = 3# 训练循环
model.train()
for epoch in range(num_epochs):for batch in train_dataloader:inputs = tokenizer(batch['text'], padding=True, truncation=True, return_tensors="pt")labels = batch['labels']outputs = model(**inputs, labels=labels)loss = outputs.loss# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()
避免灾难性遗忘
灾难性遗忘是指模型在微调新任务时,丢失了在原始任务中学到的信息。为避免这一问题,可以使用以下策略:
1. 定期微调
使用小的学习率并进行多次微调,有助于模型逐步适应新任务,从而尽量保留原有知识。
2. 可调参数冻结
冻结部分模型参数,只微调部分特定层。通常,这些层是模型的后几层(高级特征层)。
for name, param in model.named_parameters():if "classifier" not in name: # 只解冻分类头param.requires_grad = False
3. 蒙特卡罗Dropout
在训练过程中使用dropout可以帮助模型学习更具泛化性的特征。
4. 经验重放
混合原始任务的数据和新任务的数据,共同训练模型,以保留原始任务的信息。
5. 知识蒸馏
在微调过程中,将新任务学生模型的输出与原始任务教师模型的输出进行对比,从而引导模型保留原有任务的信息。
知识蒸馏示例代码:
import torch.nn.functional as F# 假设teacher_model是预训练模型,student_model是微调模型
teacher_model.eval() # 教师模型不更新权重
alpha = 0.5 # 权重系数
T = 2 # 温度for epoch in range(num_epochs):for batch in train_dataloader:inputs = tokenizer(batch['text'], padding=True, truncation=True, return_tensors="pt")labels = batch['labels']student_outputs = student_model(**inputs, labels=labels)student_loss = student_outputs.losswith torch.no_grad():teacher_outputs = teacher_model(**inputs, labels=labels)distillation_loss = F.kl_div(F.log_softmax(student_outputs.logits / T, dim=1),F.softmax(teacher_outputs.logits / T, dim=1),reduction='batchmean') * (T ** 2)loss = alpha * student_loss + (1 - alpha) * distillation_loss# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()
总结
通过全量微调和LoRA微调,可以根据任务需求和资源限制选择合适的方法。全量微调适用于需要高灵活性和高性能的任务,而LoRA微调适用于计算资源有限的场景。为了避免灾难性遗忘,可以采取定期微调、冻结部分参数、使用蒙特卡罗Dropout、体验重放和知识蒸馏等策略。这些方法可以帮助模型在适应新任务的同时,保留原有的知识。
这篇关于大模型全量微调和LoRA微调详细说明,如何避免灾难性遗忘的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!