大模型全量微调和LoRA微调详细说明,如何避免灾难性遗忘

2024-09-03 21:52

本文主要是介绍大模型全量微调和LoRA微调详细说明,如何避免灾难性遗忘,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在使用大模型进行微调时,特别是在语音识别、自然语言处理等任务中经常会遇到两个主要方法:全量微调和LoRA微调。全量微调涉及更新模型的所有参数,而LoRA(Low-Rank Adaptation)则专注于更新少量的参数来适应新的任务。这两种方法各有优缺点,并有不同的应用场景。

全量微调

1. 什么是全量微调?

全量微调是指在微调阶段,更新模型中所有参数。这个过程通常在大规模数据集上进行,以适应新的任务或改进性能。

2. 优点
  • 高灵活性:可以最大程度地优化模型以适应新任务。
  • 广泛应用:在很多场景下使用,已经被高度研究和优化。
3. 缺点
  • 高计算成本:需要更新所有参数,计算和存储成本较高。
  • 灾难性遗忘:在没有小心设计策略的情况下,模型可能会丢失原先在预训练阶段学到的信息。
4. 如何进行全量微调

以下是使用PyTorch进行全量微调的一个示例:

from transformers import BertTokenizer, BertForSequenceClassification, AdamW
from torch.utils.data import DataLoader
import torch# 加载预训练模型和tokenizer
model_name = 'bert-base-uncased'
model = BertForSequenceClassification.from_pretrained(model_name)
tokenizer = BertTokenizer.from_pretrained(model_name)# 假设你有一个数据集DataLoader
train_dataloader = DataLoader(...)# 定义优化器
optimizer = AdamW(model.parameters(), lr=2e-5)# 设置训练参数
num_epochs = 3# 训练循环
model.train()
for epoch in range(num_epochs):for batch in train_dataloader:inputs = tokenizer(batch['text'], padding=True, truncation=True, return_tensors="pt")labels = batch['labels']outputs = model(**inputs, labels=labels)loss = outputs.loss# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()

LoRA微调

1. 什么是LoRA微调?

LoRA微调是一种低秩适应方法,主要通过在特定的层和特定的尺寸上添加一些低秩矩阵,然后只更新这些低秩矩阵。它旨在减少微调过程中计算和存储成本。

2. 优点
  • 低计算成本:只更新少量参数,大大降低计算和存储需求。
  • 适用于资源受限的环境:特别是在嵌入式设备或移动设备上有用。
3. 缺点
  • 适应性较差:在某些复杂任务中,LoRA可能无法达到全量微调的性能。
  • 需要特殊设计:需要仔细选择哪些层和参数进行低秩适应。
4. 如何进行LoRA微调

以下是一个LoRA微调的示例:

import torch
import torch.nn as nn
from transformers import BertModel, BertTokenizerclass LoRAModule(nn.Module):def __init__(self, model, lora_rank=4):super(LoRAModule, self).__init__()self.lora_rank = lora_rankself.original_weight = model.classifier.weight.data.clone()self.rank_map = nn.Parameter(torch.randn(lora_rank, model.classifier.weight.size(1)))self.ranked_weight = Nonedef forward(self, x):if self.ranked_weight is None:self.ranked_weight = torch.mm(self.rank_map, self.original_weight)return torch.mm(x, self.ranked_weight.t())# 加载预训练模型
model_name = 'bert-base-uncased'
model = BertModel.from_pretrained(model_name)
tokenizer = BertTokenizer.from_pretrained(model_name)# 替换BERT模型中的classifier为LoRAModule
model.classifier = LoRAModule(model)# 假设你有一个数据集DataLoader
train_dataloader = DataLoader(...)# 定义优化器
optimizer = AdamW(model.parameters(), lr=2e-5)# 设置训练参数
num_epochs = 3# 训练循环
model.train()
for epoch in range(num_epochs):for batch in train_dataloader:inputs = tokenizer(batch['text'], padding=True, truncation=True, return_tensors="pt")labels = batch['labels']outputs = model(**inputs, labels=labels)loss = outputs.loss# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()

避免灾难性遗忘

灾难性遗忘是指模型在微调新任务时,丢失了在原始任务中学到的信息。为避免这一问题,可以使用以下策略:

1. 定期微调

使用小的学习率并进行多次微调,有助于模型逐步适应新任务,从而尽量保留原有知识。

2. 可调参数冻结

冻结部分模型参数,只微调部分特定层。通常,这些层是模型的后几层(高级特征层)。

for name, param in model.named_parameters():if "classifier" not in name:  # 只解冻分类头param.requires_grad = False

3. 蒙特卡罗Dropout

在训练过程中使用dropout可以帮助模型学习更具泛化性的特征。

4. 经验重放

混合原始任务的数据和新任务的数据,共同训练模型,以保留原始任务的信息。

5. 知识蒸馏

在微调过程中,将新任务学生模型的输出与原始任务教师模型的输出进行对比,从而引导模型保留原有任务的信息。

知识蒸馏示例代码:
import torch.nn.functional as F# 假设teacher_model是预训练模型,student_model是微调模型
teacher_model.eval()  # 教师模型不更新权重
alpha = 0.5  # 权重系数
T = 2  # 温度for epoch in range(num_epochs):for batch in train_dataloader:inputs = tokenizer(batch['text'], padding=True, truncation=True, return_tensors="pt")labels = batch['labels']student_outputs = student_model(**inputs, labels=labels)student_loss = student_outputs.losswith torch.no_grad():teacher_outputs = teacher_model(**inputs, labels=labels)distillation_loss = F.kl_div(F.log_softmax(student_outputs.logits / T, dim=1),F.softmax(teacher_outputs.logits / T, dim=1),reduction='batchmean') * (T ** 2)loss = alpha * student_loss + (1 - alpha) * distillation_loss# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()

总结

通过全量微调和LoRA微调,可以根据任务需求和资源限制选择合适的方法。全量微调适用于需要高灵活性和高性能的任务,而LoRA微调适用于计算资源有限的场景。为了避免灾难性遗忘,可以采取定期微调、冻结部分参数、使用蒙特卡罗Dropout、体验重放和知识蒸馏等策略。这些方法可以帮助模型在适应新任务的同时,保留原有的知识。

这篇关于大模型全量微调和LoRA微调详细说明,如何避免灾难性遗忘的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134154

相关文章

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

通过Docker Compose部署MySQL的详细教程

《通过DockerCompose部署MySQL的详细教程》DockerCompose作为Docker官方的容器编排工具,为MySQL数据库部署带来了显著优势,下面小编就来为大家详细介绍一... 目录一、docker Compose 部署 mysql 的优势二、环境准备与基础配置2.1 项目目录结构2.2 基

Nginx指令add_header和proxy_set_header的区别及说明

《Nginx指令add_header和proxy_set_header的区别及说明》:本文主要介绍Nginx指令add_header和proxy_set_header的区别及说明,具有很好的参考价... 目录Nginx指令add_header和proxy_set_header区别如何理解反向代理?proxy

Linux系统中配置静态IP地址的详细步骤

《Linux系统中配置静态IP地址的详细步骤》本文详细介绍了在Linux系统中配置静态IP地址的五个步骤,包括打开终端、编辑网络配置文件、配置IP地址、保存并重启网络服务,这对于系统管理员和新手都极具... 目录步骤一:打开终端步骤二:编辑网络配置文件步骤三:配置静态IP地址步骤四:保存并关闭文件步骤五:重

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

Centos环境下Tomcat虚拟主机配置详细教程

《Centos环境下Tomcat虚拟主机配置详细教程》这篇文章主要讲的是在CentOS系统上,如何一步步配置Tomcat的虚拟主机,内容很简单,从目录准备到配置文件修改,再到重启和测试,手把手带你搞定... 目录1. 准备虚拟主机的目录和内容创建目录添加测试文件2. 修改 Tomcat 的 server.X

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快

Spring Boot拦截器Interceptor与过滤器Filter详细教程(示例详解)

《SpringBoot拦截器Interceptor与过滤器Filter详细教程(示例详解)》本文详细介绍了SpringBoot中的拦截器(Interceptor)和过滤器(Filter),包括它们的... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)详细教程1. 概述1

使用Dify访问mysql数据库详细代码示例

《使用Dify访问mysql数据库详细代码示例》:本文主要介绍使用Dify访问mysql数据库的相关资料,并详细讲解了如何在本地搭建数据库访问服务,使用ngrok暴露到公网,并创建知识库、数据库访... 1、在本地搭建数据库访问的服务,并使用ngrok暴露到公网。#sql_tools.pyfrom

java导出pdf文件的详细实现方法

《java导出pdf文件的详细实现方法》:本文主要介绍java导出pdf文件的详细实现方法,包括制作模板、获取中文字体文件、实现后端服务以及前端发起请求并生成下载链接,需要的朋友可以参考下... 目录使用注意点包含内容1、制作pdf模板2、获取pdf导出中文需要的文件3、实现4、前端发起请求并生成下载链接使