大模型全量微调和LoRA微调详细说明,如何避免灾难性遗忘

2024-09-03 21:52

本文主要是介绍大模型全量微调和LoRA微调详细说明,如何避免灾难性遗忘,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在使用大模型进行微调时,特别是在语音识别、自然语言处理等任务中经常会遇到两个主要方法:全量微调和LoRA微调。全量微调涉及更新模型的所有参数,而LoRA(Low-Rank Adaptation)则专注于更新少量的参数来适应新的任务。这两种方法各有优缺点,并有不同的应用场景。

全量微调

1. 什么是全量微调?

全量微调是指在微调阶段,更新模型中所有参数。这个过程通常在大规模数据集上进行,以适应新的任务或改进性能。

2. 优点
  • 高灵活性:可以最大程度地优化模型以适应新任务。
  • 广泛应用:在很多场景下使用,已经被高度研究和优化。
3. 缺点
  • 高计算成本:需要更新所有参数,计算和存储成本较高。
  • 灾难性遗忘:在没有小心设计策略的情况下,模型可能会丢失原先在预训练阶段学到的信息。
4. 如何进行全量微调

以下是使用PyTorch进行全量微调的一个示例:

from transformers import BertTokenizer, BertForSequenceClassification, AdamW
from torch.utils.data import DataLoader
import torch# 加载预训练模型和tokenizer
model_name = 'bert-base-uncased'
model = BertForSequenceClassification.from_pretrained(model_name)
tokenizer = BertTokenizer.from_pretrained(model_name)# 假设你有一个数据集DataLoader
train_dataloader = DataLoader(...)# 定义优化器
optimizer = AdamW(model.parameters(), lr=2e-5)# 设置训练参数
num_epochs = 3# 训练循环
model.train()
for epoch in range(num_epochs):for batch in train_dataloader:inputs = tokenizer(batch['text'], padding=True, truncation=True, return_tensors="pt")labels = batch['labels']outputs = model(**inputs, labels=labels)loss = outputs.loss# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()

LoRA微调

1. 什么是LoRA微调?

LoRA微调是一种低秩适应方法,主要通过在特定的层和特定的尺寸上添加一些低秩矩阵,然后只更新这些低秩矩阵。它旨在减少微调过程中计算和存储成本。

2. 优点
  • 低计算成本:只更新少量参数,大大降低计算和存储需求。
  • 适用于资源受限的环境:特别是在嵌入式设备或移动设备上有用。
3. 缺点
  • 适应性较差:在某些复杂任务中,LoRA可能无法达到全量微调的性能。
  • 需要特殊设计:需要仔细选择哪些层和参数进行低秩适应。
4. 如何进行LoRA微调

以下是一个LoRA微调的示例:

import torch
import torch.nn as nn
from transformers import BertModel, BertTokenizerclass LoRAModule(nn.Module):def __init__(self, model, lora_rank=4):super(LoRAModule, self).__init__()self.lora_rank = lora_rankself.original_weight = model.classifier.weight.data.clone()self.rank_map = nn.Parameter(torch.randn(lora_rank, model.classifier.weight.size(1)))self.ranked_weight = Nonedef forward(self, x):if self.ranked_weight is None:self.ranked_weight = torch.mm(self.rank_map, self.original_weight)return torch.mm(x, self.ranked_weight.t())# 加载预训练模型
model_name = 'bert-base-uncased'
model = BertModel.from_pretrained(model_name)
tokenizer = BertTokenizer.from_pretrained(model_name)# 替换BERT模型中的classifier为LoRAModule
model.classifier = LoRAModule(model)# 假设你有一个数据集DataLoader
train_dataloader = DataLoader(...)# 定义优化器
optimizer = AdamW(model.parameters(), lr=2e-5)# 设置训练参数
num_epochs = 3# 训练循环
model.train()
for epoch in range(num_epochs):for batch in train_dataloader:inputs = tokenizer(batch['text'], padding=True, truncation=True, return_tensors="pt")labels = batch['labels']outputs = model(**inputs, labels=labels)loss = outputs.loss# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()

避免灾难性遗忘

灾难性遗忘是指模型在微调新任务时,丢失了在原始任务中学到的信息。为避免这一问题,可以使用以下策略:

1. 定期微调

使用小的学习率并进行多次微调,有助于模型逐步适应新任务,从而尽量保留原有知识。

2. 可调参数冻结

冻结部分模型参数,只微调部分特定层。通常,这些层是模型的后几层(高级特征层)。

for name, param in model.named_parameters():if "classifier" not in name:  # 只解冻分类头param.requires_grad = False

3. 蒙特卡罗Dropout

在训练过程中使用dropout可以帮助模型学习更具泛化性的特征。

4. 经验重放

混合原始任务的数据和新任务的数据,共同训练模型,以保留原始任务的信息。

5. 知识蒸馏

在微调过程中,将新任务学生模型的输出与原始任务教师模型的输出进行对比,从而引导模型保留原有任务的信息。

知识蒸馏示例代码:
import torch.nn.functional as F# 假设teacher_model是预训练模型,student_model是微调模型
teacher_model.eval()  # 教师模型不更新权重
alpha = 0.5  # 权重系数
T = 2  # 温度for epoch in range(num_epochs):for batch in train_dataloader:inputs = tokenizer(batch['text'], padding=True, truncation=True, return_tensors="pt")labels = batch['labels']student_outputs = student_model(**inputs, labels=labels)student_loss = student_outputs.losswith torch.no_grad():teacher_outputs = teacher_model(**inputs, labels=labels)distillation_loss = F.kl_div(F.log_softmax(student_outputs.logits / T, dim=1),F.softmax(teacher_outputs.logits / T, dim=1),reduction='batchmean') * (T ** 2)loss = alpha * student_loss + (1 - alpha) * distillation_loss# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()

总结

通过全量微调和LoRA微调,可以根据任务需求和资源限制选择合适的方法。全量微调适用于需要高灵活性和高性能的任务,而LoRA微调适用于计算资源有限的场景。为了避免灾难性遗忘,可以采取定期微调、冻结部分参数、使用蒙特卡罗Dropout、体验重放和知识蒸馏等策略。这些方法可以帮助模型在适应新任务的同时,保留原有的知识。

这篇关于大模型全量微调和LoRA微调详细说明,如何避免灾难性遗忘的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134154

相关文章

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码

MySQL之InnoDB存储引擎中的索引用法及说明

《MySQL之InnoDB存储引擎中的索引用法及说明》:本文主要介绍MySQL之InnoDB存储引擎中的索引用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录1、背景2、准备3、正篇【1】存储用户记录的数据页【2】存储目录项记录的数据页【3】聚簇索引【4】二

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

HTML img标签和超链接标签详细介绍

《HTMLimg标签和超链接标签详细介绍》:本文主要介绍了HTML中img标签的使用,包括src属性(指定图片路径)、相对/绝对路径区别、alt替代文本、title提示、宽高控制及边框设置等,详细内容请阅读本文,希望能对你有所帮助... 目录img 标签src 属性alt 属性title 属性width/h

Maven中的profiles使用及说明

《Maven中的profiles使用及说明》:本文主要介绍Maven中的profiles使用及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录主要用途定义 Profiles示例:多环境配置激活 Profiles示例:资源过滤示例:依赖管理总结Maven 中的

CSS3打造的现代交互式登录界面详细实现过程

《CSS3打造的现代交互式登录界面详细实现过程》本文介绍CSS3和jQuery在登录界面设计中的应用,涵盖动画、选择器、自定义字体及盒模型技术,提升界面美观与交互性,同时优化性能和可访问性,感兴趣的朋... 目录1. css3用户登录界面设计概述1.1 用户界面设计的重要性1.2 CSS3的新特性与优势1.

PostgreSQL数据库密码被遗忘时的操作步骤

《PostgreSQL数据库密码被遗忘时的操作步骤》密码遗忘是常见的用户问题,因此提供一种安全的遗忘密码找回机制是十分必要的,:本文主要介绍PostgreSQL数据库密码被遗忘时的操作步骤的相关资... 目录前言一、背景知识二、Windows环境下的解决步骤1. 找到PostgreSQL安装目录2. 修改p

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4