事务(ACID)、并发一致性问题(丢失修改、读脏数据、不可重复读、幻影读)、封锁(封锁粒度、类型、协议、MySQL 隐式与显示锁定)

本文主要是介绍事务(ACID)、并发一致性问题(丢失修改、读脏数据、不可重复读、幻影读)、封锁(封锁粒度、类型、协议、MySQL 隐式与显示锁定),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 事务
1.1 概念

事务指的是满足 ACID 特性的一组操作,可以通过 Commit 提交一个事务,也可以使用 Rollback 进行回滚。

1.2 ACID
1.2.1  原子性(Atomicity)

事务被视为不可分割的最小单元,事务的所有操作要么全部提交成功,要么全部失败回滚。

回滚可以用日志来实现,日志记录着事务所执行的修改操作,在回滚时反向执行这些修改操作即可。

1.2.2 一致性(Consistency)
数据库在事务执行前后都保持一致性状态。在一致性状态下,所有事务对一个数据的读取结果都是相同的。

1.2.3  隔离性(Isolation)
一个事务所做的修改在最终提交以前,对其它事务是不可见的。

1.2.4 持久性(Durability)
一旦事务提交,则其所做的修改将会永远保存到数据库中。即使系统发生崩溃,事务执行的结果也不能丢失。

可以通过数据库备份和恢复来实现,在系统发生崩溃时,使用备份的数据库进行数据恢复。

事务的 ACID 特性概念简单,但不是很好理解,主要是因为这几个特性不是一种平级关系:

只有满足一致性,事务的执行结果才是正确的。
在无并发的情况下,事务串行执行,隔离性一定能够满足。此时只要能满足原子性,就一定能满足一致性。
在并发的情况下,多个事务并行执行,事务不仅要满足原子性,还需要满足隔离性,才能满足一致性。
事务满足持久化是为了能应对数据库崩溃的情况。


1.3 AUTOCOMMIT
MySQL 默认采用自动提交模式。也就是说,如果不显式使用 START TRANSACTION 语句来开始一个事务,那么每个查询都会被当做一个事务自动提交。

2. 并发一致性问题
在并发环境下,事务的隔离性很难保证,因此会出现很多并发一致性问题。

2.1 丢失修改
T1 和 T2 两个事务都对一个数据进行修改,T1 先修改,T 2随后修改,T 2的修改覆盖了T1的修改。

2.2 读脏数据
T1修改一个数据,T2随后读取这个数据。如果 T1撤销了这次修改,那么 T2读取的数据是脏数据。

2.3 不可重复读
T2读取一个数据,T1对该数据做了修改。如果 T2再次读取这个数据,此时读取的结果和第一次读取的结果不同。

2.4 幻影读
T1读取某个范围的数据,T2在这个范围内插入新的数据,T1再次读取这个范围的数据,此时读取的结果和和第一次读取的结果不同。

产生并发不一致性问题主要原因是破坏了事务的隔离性,解决方法是通过并发控制来保证隔离性。

并发控制可以通过封锁来实现,但是封锁操作需要用户自己控制,相当复杂。

数据库管理系统提供了事务的隔离级别,让用户以一种更轻松的方式处理并发一致性问题。

3. 封锁
3.1 封锁粒度

MySQL 中提供了两种封锁粒度:行级锁以及表级锁。

应该尽量只锁定需要修改的那部分数据,而不是所有的资源。
锁定的数据量越少,发生锁争用的可能就越小,系统的并发程度就越高。
但是加锁需要消耗资源,锁的各种操作(包括获取锁、释放锁、以及检查锁状态)都会增加系统开销。
因此封锁粒度越小,系统开销就越大。
在选择封锁粒度时,需要在锁开销和并发程度之间做一个权衡。

3.2 封锁类型
3.2.1 读写锁

排它锁(Exclusive) ,简写为 X 锁,又称写锁。
共享锁(Shared) ,简写为 S 锁,又称读锁。
有以下两个规定:

一个事务对数据对象 A 加了 X 锁,就可以对 A 进行读取和更新。加锁期间其它事务不能对 A 加任何锁。

一个事务对数据对象 A 加了 S 锁,可以对 A 进行读取操作,但是不能进行更新操作。加锁期间其它事务能对 A 加 S 锁,但是不能加 X 锁。

锁的兼容关系如下:


3.2.2 意向锁
使用意向锁(Intention Locks) 可以更容易地支持多粒度封锁。

在存在行级锁和表级锁的情况下,事务 T 想要对表 A 加 X 锁,就需要先检测是否有其它事务对表 A 或者表 A 中的任意一行加了锁,那么就需要对表 A 的每一行都检测一次,这是非常耗时的。

意向锁在原来的 X/S 锁之上引入了 IX/IS,IX/IS 都是表锁,用来表示一个事务想要在表中的某个数据行上加 X 锁或 S 锁。

有以下两个规定:

一个事务在获得某个数据行对象的 S 锁之前,必须先获得表的 IS 锁或者更强的锁;

一个事务在获得某个数据行对象的 X 锁之前,必须先获得表的 IX 锁。

通过引入意向锁,事务 T 想要对表 A 加 X 锁,只需要先检测是否有其它事务对表A 加了 X/IX/S/IS 锁,如果加了就表示有其它事务正在使用这个表或者表中某一行的锁,因此事务 T 加 X 锁失败。

各种锁的兼容关系如下:


解释如下:

任意 IS/IX 锁之间都是兼容的,因为它们只是表示想要对表加锁,而不是真正加锁;

S 锁只与 S 锁和 IS 锁兼容,也就是说事务 T 想要对数据行加 S 锁,其它事务可以已经获得对表或者表中的行的 S 锁。

3.3 封锁协议
3.3.1 三级封锁协议

一级封锁协议

事务 T 要修改数据 A 时必须加 X 锁,直到 T 结束才释放锁。

可以解决丢失修改问题,因为不能同时有两个事务对同一个数据进行修改,那么事务的修改就不会被覆盖。

二级封锁协议

在一级的基础上,要求读取数据 A 时必须加 S 锁,读取完马上释放 S 锁。

可以解决读脏数据问题,因为如果一个事务在对数据 A 进行修改,根据 1 级封锁协议,会加 X 锁,那么就不能再加 S 锁了,也就是不会读入数据。

三级封锁协议

在二级的基础上,要求读取数据 A 时必须加 S 锁,直到事务结束了才能释放 S锁。

可以解决不可重复读的问题,因为读 A 时,其它事务不能对 A 加 X 锁,从而避免了在读的期间数据发生改变。

3.3.2 两段锁协议
加锁和解锁分为两个阶段进行。

可串行化调度是指,通过并发控制,使得并发执行的事务结果与某个串行执行的事务结果相同。

事务遵循两段锁协议是保证可串行化调度的充分条件。

例如以下操作满足两段锁协议,它是可串行化调度。

lock-x(A)...lock-s(B)...lock-s(C)...unlock(A)...unlock(C)...unlock(B)
但不是必要条件,例如以下操作不满足两段锁协议,但是它还是可串行化调度

lock-x(A)...unlock(A)...lock-s(B)...unlock(B)...lock-s(C)...unlock(C)
3.4 MySQL 隐式与显示锁定
MySQL 的 InnoDB 存储引擎采用两段锁协议,会根据隔离级别在需要的时候自动加锁,并且所有的锁都是在同一时刻被释放,这被称为隐式锁定。

InnoDB 也可以使用特定的语句进行显示锁定:


————————————————
版权声明:本文为CSDN博主「凌琅Zxin」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Zhxin606a/article/details/89560969

这篇关于事务(ACID)、并发一致性问题(丢失修改、读脏数据、不可重复读、幻影读)、封锁(封锁粒度、类型、协议、MySQL 隐式与显示锁定)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133902

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

SQL中的外键约束

外键约束用于表示两张表中的指标连接关系。外键约束的作用主要有以下三点: 1.确保子表中的某个字段(外键)只能引用父表中的有效记录2.主表中的列被删除时,子表中的关联列也会被删除3.主表中的列更新时,子表中的关联元素也会被更新 子表中的元素指向主表 以下是一个外键约束的实例展示

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

如何去写一手好SQL

MySQL性能 最大数据量 抛开数据量和并发数,谈性能都是耍流氓。MySQL没有限制单表最大记录数,它取决于操作系统对文件大小的限制。 《阿里巴巴Java开发手册》提出单表行数超过500万行或者单表容量超过2GB,才推荐分库分表。性能由综合因素决定,抛开业务复杂度,影响程度依次是硬件配置、MySQL配置、数据表设计、索引优化。500万这个值仅供参考,并非铁律。 博主曾经操作过超过4亿行数据

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu