本文主要是介绍【佳佳的斐波那契】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目
思路
我们的目标是T[n]:
∑ 1 < = i < = n i f [ i ] \; \; \; \; \; \; \; \; \; \;\; \; \; \; \; \; \; \; \; \; \; \; \; \; \;\; \; \; \sum_{ 1<=i <=n} if[i] ∑1<=i<=nif[i]
我们的迭代目标是:
T [ n ] → T [ n + 1 ] \; \; \; \; \; \; \; \; \; \;\; \; \; \; \; \;\; \; \; \; \; \; \; \; \; \; \;T[n] \rightarrow T[n+1] T[n]→T[n+1]
为了达成迭代目标,我们需要引入:
T [ n + 1 ] − T [ n ] = ( n + 1 ) ⋅ f [ n + 1 ] \; \; \; \; \; \; \; \; \; \;T[n+1] - T[n] = (n+1) \cdot f[n+1] T[n+1]−T[n]=(n+1)⋅f[n+1]
不失一般性,我们把引入的对象看成:
( n + 2 ) ⋅ f [ n + 2 ] \; \; \; \; \; \; \; \;(n+2) \cdot f[n+2] (n+2)⋅f[n+2]
为了引入这个,我们引入 nf[n] 和 (n+1)f[n+1],就有:
n ⋅ f [ n ] + 2 f [ n ] + ( n + 1 ) ⋅ f [ n + 1 ] + f [ n + 1 ] = ( n + 2 ) f [ n + 2 ] n \cdot f[n] + 2 f[n] + (n+1) \cdot f[n+1] + f[n+1] = (n+2)f[n+2] n⋅f[n]+2f[n]+(n+1)⋅f[n+1]+f[n+1]=(n+2)f[n+2]
由此我们确定了需要引入的几个式子:
[ f [ n ] , f [ n + 1 ] , n f [ n ] , ( n + 1 ) f [ n + 1 ] , T [ n ] ] [\;f[n], \;f[n+1], \;nf[n], \;(n+1)f[n+1], \;T[n] \;] [f[n],f[n+1],nf[n],(n+1)f[n+1],T[n]]
其中,几个公式构成的子矩阵本身是可迭代的:
[ f [ n ] , f [ n + 1 ] ] [ f [ n ] , f [ n + 1 ] , n ⋅ f [ n ] , ( n + 1 ) ⋅ f [ n + 1 ] ] \begin{align} [f[n], \; f[n+1]] \\ [f[n], \; f[n+1], \; n \cdot f[n], \; (n+1) \cdot f[n+1]] \end{align} [f[n],f[n+1]][f[n],f[n+1],n⋅f[n],(n+1)⋅f[n+1]]
代码
#pragma GCC optimize(3)
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long LL;const int N = 5;
int n, m;
void mul(int c[][N], int a[][N], int b[][N])
{int temp[N][N] = {0};for(int i = 0; i < N; i++){for(int j = 0; j < N; j++){for(int k = 0; k < N; k++){temp[i][j] = (temp[i][j] + 1LL * a[i][k] * b[k][j]) % m;}}}memcpy(c, temp, sizeof temp);
}
int main()
{ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);cin >> n >> m;int a[N][N] = {1, 1, 1, 2, 1};int b[N][N] = {{0,1,0,2,0},{1,1,0,1,0},{0,0,0,1,0},{0,0,1,1,1},{0,0,0,0,1}};int x = n-1;while (x){if(x & 1) mul(a, a, b);mul(b, b, b);x >>= 1;}cout << a[0][4] % m;return 0;
}
这篇关于【佳佳的斐波那契】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!