【矩阵快速幂】HDU 4549 : M斐波那契数列(矩阵嵌套)

2024-08-27 02:48

本文主要是介绍【矩阵快速幂】HDU 4549 : M斐波那契数列(矩阵嵌套),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【题目链接】click here~~

【题目大意】

M斐波那契数列F[n]是一种整数数列,它的定义如下:

F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )

现在给出a, b, n,你能求出F[n]的值吗?对每组测试数据请输出一个整数F[n],由于F[n]可能很大,你只需输出F[n]对1000000007取模后的值即可,每组数据输出一行。

【Source】 :2013金山西山居创意游戏程序挑战赛――初赛(2)

【解题思路】

这个题稍微有点难度,就是要考虑矩阵里面嵌套矩阵,这样的话,我们就要分别计算左右两边的值,然后再用一次快速幂求出最后的答案,

思考如下:
写出F(2)、F(3)、F(4)、F(5)…会发现a和b的指数是fibonacci数,如果求出fib数列,用快速幂就可以快速求出最后答案。问题转化为了如何快速求解fib数列。 因为【F(n-2),F(n-1)】*【0,1,1,1】 = 【F(n-1),F(n)】,所以可以用矩阵乘法来求。 每次相乘的矩阵为 0 1 1 1 为了防止求F(n)时溢出,要对矩阵元素取模,即 a[i][j] %= 1000000006。模数之所以为1000000006是因为根据费马小定理可得A^euler(M) = 1 (mod M),其中M为素数。 所以A^N = A^(N % euler(M))(mod M),而1000000007为数,euler(1000000007)= 1000000006,所以模数是1000000006。 求出F(n-1)和F(n)以后,用二分快速幂求出pow(a,F(n-1))* pow(b,F(n))% 1000000007 就是最后的答案。

代码

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
using namespace std;
const int MOD1=1e9+7;
const int MOD2=1e9+6;
#define LL long long
struct Matrlc
{LL map[2][2];
};
Matrlc unit = {1,0,0,1};
Matrlc mult(Matrlc a,Matrlc b)
{Matrlc c;for(int i=0; i<2; i++)for(int j=0; j<2; j++){c.map[i][j]=0;for(int k=0; k<2; k++)c.map[i][j]+=(a.map[i][k]*b.map[k][j])%MOD2;c.map[i][j]%=MOD2;}return c;
}
Matrlc pow1(Matrlc a,LL n)
{Matrlc ans=unit;Matrlc res=a;while(n){if(n&1)   ans=mult(ans,res);res=mult(res,res);n>>=1;}return ans;
}
LL pow2(LL a,LL b)
{LL res=1;LL ans=a%MOD1;while(b){if(b&1) res=res*ans%MOD1;ans=ans*ans%MOD1;b>>=1;}return res;
}
int main()
{LL A,B,N,i,j;Matrlc tmp;tmp.map[0][0]=0;tmp.map[0][1]=tmp.map[1][0]=tmp.map[1][1]=1;while(cin>>A>>B>>N){Matrlc p=pow1(tmp,N);LL result=pow2(A,p.map[0][0])*pow2(B,p.map[0][1])%MOD1;printf("%lld\n",result);}return 0;
}



这篇关于【矩阵快速幂】HDU 4549 : M斐波那契数列(矩阵嵌套)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110421

相关文章

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

python展开嵌套列表的多种方法

《python展开嵌套列表的多种方法》本文主要介绍了python展开嵌套列表的多种方法,包括for循环、列表推导式和sum函数三种方法,具有一定的参考价值,感兴趣的可以了解一下... 目录一、嵌套列表格式二、嵌套列表展开方法(一)for循环(1)for循环+append()(2)for循环+pyPhWiFd

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快

Win32下C++实现快速获取硬盘分区信息

《Win32下C++实现快速获取硬盘分区信息》这篇文章主要为大家详细介绍了Win32下C++如何实现快速获取硬盘分区信息,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实现代码CDiskDriveUtils.h#pragma once #include <wtypesbase

Java嵌套for循环优化方案分享

《Java嵌套for循环优化方案分享》介绍了Java中嵌套for循环的优化方法,包括减少循环次数、合并循环、使用更高效的数据结构、并行处理、预处理和缓存、算法优化、尽量减少对象创建以及本地变量优化,通... 目录Java 嵌套 for 循环优化方案1. 减少循环次数2. 合并循环3. 使用更高效的数据结构4

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

Python如何快速下载依赖

《Python如何快速下载依赖》本文介绍了四种在Python中快速下载依赖的方法,包括使用国内镜像源、开启pip并发下载功能、使用pipreqs批量下载项目依赖以及使用conda管理依赖,通过这些方法... 目录python快速下载依赖1. 使用国内镜像源临时使用镜像源永久配置镜像源2. 使用 pip 的并

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Spring常见错误之Web嵌套对象校验失效解决办法

《Spring常见错误之Web嵌套对象校验失效解决办法》:本文主要介绍Spring常见错误之Web嵌套对象校验失效解决的相关资料,通过在Phone对象上添加@Valid注解,问题得以解决,需要的朋... 目录问题复现案例解析问题修正总结  问题复现当开发一个学籍管理系统时,我们会提供了一个 API 接口去