【机器学习】图像处理与深度学习利器:OpenCV实战攻略全面解析

本文主要是介绍【机器学习】图像处理与深度学习利器:OpenCV实战攻略全面解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

🎬 鸽芷咕:个人主页

 🔥 个人专栏: 《C++干货基地》《粉丝福利》

⛺️生活的理想,就是为了理想的生活!

前言

OpenCV想必大家都听过跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效由一系列 C 函数和少量 C++ 类构成,可谓是处理图像上的一把好手今天我们就来看下OpenCV的全面攻略让你彻底认识OpenCV。

文章目录

  • 前言
  • 一、 OpenCV简介
    • 1.1 什么是OpenCV?
    • 1.2 OpenCV的历史与发展
    • 1.3 OpenCV的应用领域
  • 二、OpenCV在不用平台的安装
    • 2.1 OpenCV的安装与配置
    • 2.2 OpenCV在Windows系统下的安装
    • 2.3 OpenCV在Linux系统下的安装
    • 2.4 OpenCV在Mac OS系统下的安装
    • 2.5 配置Python环境使用OpenCV
  • 三、OpenCV基础使用
    • 3.1 图像的载入、显示和保存
    • 3.2 图像的基础操作
  • 四、图像色彩空间如何转换
    • 4.1 图像处理与计算机视觉基础
    • 4.2 图像阈值化
    • 4.3 边缘检测
    • 4.4 图像滤波
    • 4.5 图像形态学操作
  • 结尾

一、 OpenCV简介

1.1 什么是OpenCV?

在这里插入图片描述

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。它由一系列的C函数和少量C++类构成,同时提供Python、Java和MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。

# 导入OpenCV库
import cv2# 打印OpenCV版本
print(cv2.__version__)

输出:

4.5.2

OpenCV的设计目标是提供一套简单而且可扩展的计算机视觉库,使得它能够方便地在实际的应用、研究、开发中被使用。

1.2 OpenCV的历史与发展

OpenCV的起源可以追溯到1999年,当时在英特尔公司由一群热情的研发工程师开始进行开发。2000年,OpenCV以开源的方式发布,旨在推动计算机视觉的发展并帮助更多人应用这一技术。自此之后,OpenCV已经不断发展,增加了大量新的功能,并已成为全球最流行的计算机视觉库之一。

1.3 OpenCV的应用领域

OpenCV具有极广的应用领域,它包括但不限于:

  • 人脸识别和物体识别:这是OpenCV的一项重要功能,应用在许多领域,如安全监控、交互设计等。
  • 图像和视频分析:如图像增强、图像分割、视频跟踪等。
  • 图像合成和3D重建:在图像处理和计算机视觉领域,OpenCV可以用于创建AR或VR效果,生成3D模型等。
  • 机器学习:OpenCV内置了大量的机器学习算法,可以用于图像分类、聚类等任务。
  • 深度学习:OpenCV中的dnn模块提供了一系列深度学习模型的接口,用户可以加载预训练模型进行图像识别、目标检测等任务。
# 例如,以下代码展示了如何使用OpenCV进行图像读取和显示
import cv2# 读取一张图像
img = cv2.imread('image.jpg')# 显示图像
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

综上,OpenCV凭借其强大的功能、开源的优势以及广泛的应用领域,成为了学者和工业界的重要工具。

二、OpenCV在不用平台的安装

2.1 OpenCV的安装与配置

OpenCV的安装方式根据不同的操作系统和使用环境有所不同。以下我们将分别介绍在Windows、Linux和Mac OS下的安装方式,以及如何配置Python环境使用OpenCV。

2.2 OpenCV在Windows系统下的安装

在Windows系统下,推荐使用Python的包管理工具pip来安装OpenCV。你可以在命令行中运行以下命令来安装:

pip install opencv-python

如果你需要使用到OpenCV的额外模块(如xfeatures2d等),可以安装opencv-contrib-python包:

pip install opencv-contrib-python

2.3 OpenCV在Linux系统下的安装

在Linux系统下,我们同样可以使用pip来安装OpenCV。打开终端,运行以下命令:

pip install opencv-python

同样,如果你需要使用到OpenCV的额外模块,可以安装opencv-contrib-python包:

pip install opencv-contrib-python

2.4 OpenCV在Mac OS系统下的安装

在Mac OS下,我们同样可以使用pip来安装OpenCV。打开终端,运行以下命令:

pip install opencv-python

如果你需要使用到OpenCV的额外模块,可以安装opencv-contrib-python包:

pip install opencv-contrib-python

2.5 配置Python环境使用OpenCV

安装完成OpenCV后,我们可以在Python环境中导入cv2模块来使用OpenCV的功能。你可以创建一个新的Python脚本,然后在其中输入以下代码来测试OpenCV是否安装成功:

import cv2# 打印OpenCV版本
print(cv2.__version__)

如果输出了你所安装的OpenCV版本号,那么恭喜你,你已经成功安装并配置好了OpenCV!

总的来说,无论是在Windows、Linux还是Mac OS系统下,安装和使用OpenCV都是相对简单的。只需要几个简单的命令,就可以开始你的OpenCV之旅了。

三、OpenCV基础使用

在此部分,我们将介绍一些OpenCV的基础知识,包括图像的载入、显示和保存,以及图像的基本操作和色彩空间的转换。

3.1 图像的载入、显示和保存

在OpenCV中,我们通常使用imread()函数来载入一张图像,使用imshow()函数来显示一张图像,使用imwrite()函数来保存一张图像。

以下是一个示例:

import cv2# 载入一张图像
img = cv2.imread('image.jpg')# 显示图像
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()# 保存图像
cv2.imwrite('new_image.jpg', img)

3.2 图像的基础操作

OpenCV提供了一系列的函数来进行图像的基础操作,包括但不限于:

  • 获取和修改像素值
  • 获取图像的基本属性(如大小、通道数、像素数等)
  • 设置图像的ROI(Region of Interest)
  • 拆分和合并图像通道
# 获取和修改像素值
px = img[100,100]
print(px)# 修改像素值
img[100,100] = [255,255,255]
print(img[100,100])# 获取图像属性
print(img.shape)
print(img.size)
print(img.dtype)# 设置ROI
roi = img[100:200, 100:200]# 拆分和合并图像通道
b,g,r = cv2.split(img)
img = cv2.merge((b,g,r))

四、图像色彩空间如何转换

OpenCV提供了200+种颜色空间的转换方法,但是我们最常用的还是RGB<->Gray和RGB<->HSV的转换。

我们可以使用cv2.cvtColor()函数来进行颜色空间的转换,如下例:

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 转换为HSV图像
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

这是OpenCV基础操作的简单介绍,这些操作是我们在进行更高级的图像处理之前需要掌握的基础知识。

4.1 图像处理与计算机视觉基础

在计算机视觉中,图像处理是一个关键的环节,它包括图像阈值化、边缘检测、图像滤波、图像形态学操作和图像二值化等操作。下面我们将一一介绍。
在这里插入图片描述

4.2 图像阈值化

图像阈值化是将图像从灰度转换为二值化图像的过程,OpenCV提供了cv2.threshold()函数来进行这项操作。

import cv2
import numpy as np# 载入图像并转为灰度图
img = cv2.imread('image.jpg',0)# 阈值化处理
ret,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)# 显示处理结果
cv2.imshow('threshold',thresh1)
cv2.waitKey(0)
cv2.destroyAllWindows()

4.3 边缘检测

边缘检测是计算机视觉中的常见任务,它可以用来识别图像中的物体。Canny边缘检测是一种常用的边缘检测算法,OpenCV中可以使用cv2.Canny()函数来进行Canny边缘检测。

import cv2
import numpy as np# 载入图像
img = cv2.imread('image.jpg',0)# 进行Canny边缘检测
edges = cv2.Canny(img,100,200)# 显示处理结果
cv2.imshow('edges',edges)
cv2.waitKey(0)
cv2.destroyAllWindows()

4.4 图像滤波

图像滤波是计算机视觉中常见的图像预处理方法,OpenCV提供了各种滤波函数,如cv2.filter2D()cv2.blur()cv2.GaussianBlur()等。

import cv2
import numpy as np# 载入图像
img = cv2.imread('image.jpg')# 使用高斯滤波进行图像平滑处理
blur = cv2.GaussianBlur(img,(5,5),0)# 显示处理结果
cv2.imshow('blur',blur)
cv2.waitKey(0)
cv2.destroyAllWindows()

4.5 图像形态学操作

形态学操作是基于图像形状的一系列操作,包括腐蚀、膨胀、开运算和闭运算等。OpenCV提供了cv2.erode()cv2.dilate()cv2.morphologyEx()等函数来进行形态学操作。

import cv2
import numpy as np# 载入图像
img = cv2.imread('image.jpg',0)# 创建一个5x5的结构元素
kernel = np.ones((5,5),np.uint8)# 进行膨胀操作
dilation = cv2.dilate(img,kernel,iterations = 1)# 显示处理结果
cv2.imshow('dilation',dilation)
cv2.waitKey(0)
cv2.destroyAllWindows()

结尾

这篇关于【机器学习】图像处理与深度学习利器:OpenCV实战攻略全面解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132678

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

使用Java实现一个解析CURL脚本小工具

《使用Java实现一个解析CURL脚本小工具》文章介绍了如何使用Java实现一个解析CURL脚本的工具,该工具可以将CURL脚本中的Header解析为KVMap结构,获取URL路径、请求类型,解析UR... 目录使用示例实现原理具体实现CurlParserUtilCurlEntityICurlHandler

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT

数据库使用之union、union all、各种join的用法区别解析

《数据库使用之union、unionall、各种join的用法区别解析》:本文主要介绍SQL中的Union和UnionAll的区别,包括去重与否以及使用时的注意事项,还详细解释了Join关键字,... 目录一、Union 和Union All1、区别:2、注意点:3、具体举例二、Join关键字的区别&php