【机器学习】图像处理与深度学习利器:OpenCV实战攻略全面解析

本文主要是介绍【机器学习】图像处理与深度学习利器:OpenCV实战攻略全面解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

🎬 鸽芷咕:个人主页

 🔥 个人专栏: 《C++干货基地》《粉丝福利》

⛺️生活的理想,就是为了理想的生活!

前言

OpenCV想必大家都听过跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效由一系列 C 函数和少量 C++ 类构成,可谓是处理图像上的一把好手今天我们就来看下OpenCV的全面攻略让你彻底认识OpenCV。

文章目录

  • 前言
  • 一、 OpenCV简介
    • 1.1 什么是OpenCV?
    • 1.2 OpenCV的历史与发展
    • 1.3 OpenCV的应用领域
  • 二、OpenCV在不用平台的安装
    • 2.1 OpenCV的安装与配置
    • 2.2 OpenCV在Windows系统下的安装
    • 2.3 OpenCV在Linux系统下的安装
    • 2.4 OpenCV在Mac OS系统下的安装
    • 2.5 配置Python环境使用OpenCV
  • 三、OpenCV基础使用
    • 3.1 图像的载入、显示和保存
    • 3.2 图像的基础操作
  • 四、图像色彩空间如何转换
    • 4.1 图像处理与计算机视觉基础
    • 4.2 图像阈值化
    • 4.3 边缘检测
    • 4.4 图像滤波
    • 4.5 图像形态学操作
  • 结尾

一、 OpenCV简介

1.1 什么是OpenCV?

在这里插入图片描述

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。它由一系列的C函数和少量C++类构成,同时提供Python、Java和MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。

# 导入OpenCV库
import cv2# 打印OpenCV版本
print(cv2.__version__)

输出:

4.5.2

OpenCV的设计目标是提供一套简单而且可扩展的计算机视觉库,使得它能够方便地在实际的应用、研究、开发中被使用。

1.2 OpenCV的历史与发展

OpenCV的起源可以追溯到1999年,当时在英特尔公司由一群热情的研发工程师开始进行开发。2000年,OpenCV以开源的方式发布,旨在推动计算机视觉的发展并帮助更多人应用这一技术。自此之后,OpenCV已经不断发展,增加了大量新的功能,并已成为全球最流行的计算机视觉库之一。

1.3 OpenCV的应用领域

OpenCV具有极广的应用领域,它包括但不限于:

  • 人脸识别和物体识别:这是OpenCV的一项重要功能,应用在许多领域,如安全监控、交互设计等。
  • 图像和视频分析:如图像增强、图像分割、视频跟踪等。
  • 图像合成和3D重建:在图像处理和计算机视觉领域,OpenCV可以用于创建AR或VR效果,生成3D模型等。
  • 机器学习:OpenCV内置了大量的机器学习算法,可以用于图像分类、聚类等任务。
  • 深度学习:OpenCV中的dnn模块提供了一系列深度学习模型的接口,用户可以加载预训练模型进行图像识别、目标检测等任务。
# 例如,以下代码展示了如何使用OpenCV进行图像读取和显示
import cv2# 读取一张图像
img = cv2.imread('image.jpg')# 显示图像
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

综上,OpenCV凭借其强大的功能、开源的优势以及广泛的应用领域,成为了学者和工业界的重要工具。

二、OpenCV在不用平台的安装

2.1 OpenCV的安装与配置

OpenCV的安装方式根据不同的操作系统和使用环境有所不同。以下我们将分别介绍在Windows、Linux和Mac OS下的安装方式,以及如何配置Python环境使用OpenCV。

2.2 OpenCV在Windows系统下的安装

在Windows系统下,推荐使用Python的包管理工具pip来安装OpenCV。你可以在命令行中运行以下命令来安装:

pip install opencv-python

如果你需要使用到OpenCV的额外模块(如xfeatures2d等),可以安装opencv-contrib-python包:

pip install opencv-contrib-python

2.3 OpenCV在Linux系统下的安装

在Linux系统下,我们同样可以使用pip来安装OpenCV。打开终端,运行以下命令:

pip install opencv-python

同样,如果你需要使用到OpenCV的额外模块,可以安装opencv-contrib-python包:

pip install opencv-contrib-python

2.4 OpenCV在Mac OS系统下的安装

在Mac OS下,我们同样可以使用pip来安装OpenCV。打开终端,运行以下命令:

pip install opencv-python

如果你需要使用到OpenCV的额外模块,可以安装opencv-contrib-python包:

pip install opencv-contrib-python

2.5 配置Python环境使用OpenCV

安装完成OpenCV后,我们可以在Python环境中导入cv2模块来使用OpenCV的功能。你可以创建一个新的Python脚本,然后在其中输入以下代码来测试OpenCV是否安装成功:

import cv2# 打印OpenCV版本
print(cv2.__version__)

如果输出了你所安装的OpenCV版本号,那么恭喜你,你已经成功安装并配置好了OpenCV!

总的来说,无论是在Windows、Linux还是Mac OS系统下,安装和使用OpenCV都是相对简单的。只需要几个简单的命令,就可以开始你的OpenCV之旅了。

三、OpenCV基础使用

在此部分,我们将介绍一些OpenCV的基础知识,包括图像的载入、显示和保存,以及图像的基本操作和色彩空间的转换。

3.1 图像的载入、显示和保存

在OpenCV中,我们通常使用imread()函数来载入一张图像,使用imshow()函数来显示一张图像,使用imwrite()函数来保存一张图像。

以下是一个示例:

import cv2# 载入一张图像
img = cv2.imread('image.jpg')# 显示图像
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()# 保存图像
cv2.imwrite('new_image.jpg', img)

3.2 图像的基础操作

OpenCV提供了一系列的函数来进行图像的基础操作,包括但不限于:

  • 获取和修改像素值
  • 获取图像的基本属性(如大小、通道数、像素数等)
  • 设置图像的ROI(Region of Interest)
  • 拆分和合并图像通道
# 获取和修改像素值
px = img[100,100]
print(px)# 修改像素值
img[100,100] = [255,255,255]
print(img[100,100])# 获取图像属性
print(img.shape)
print(img.size)
print(img.dtype)# 设置ROI
roi = img[100:200, 100:200]# 拆分和合并图像通道
b,g,r = cv2.split(img)
img = cv2.merge((b,g,r))

四、图像色彩空间如何转换

OpenCV提供了200+种颜色空间的转换方法,但是我们最常用的还是RGB<->Gray和RGB<->HSV的转换。

我们可以使用cv2.cvtColor()函数来进行颜色空间的转换,如下例:

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 转换为HSV图像
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

这是OpenCV基础操作的简单介绍,这些操作是我们在进行更高级的图像处理之前需要掌握的基础知识。

4.1 图像处理与计算机视觉基础

在计算机视觉中,图像处理是一个关键的环节,它包括图像阈值化、边缘检测、图像滤波、图像形态学操作和图像二值化等操作。下面我们将一一介绍。
在这里插入图片描述

4.2 图像阈值化

图像阈值化是将图像从灰度转换为二值化图像的过程,OpenCV提供了cv2.threshold()函数来进行这项操作。

import cv2
import numpy as np# 载入图像并转为灰度图
img = cv2.imread('image.jpg',0)# 阈值化处理
ret,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)# 显示处理结果
cv2.imshow('threshold',thresh1)
cv2.waitKey(0)
cv2.destroyAllWindows()

4.3 边缘检测

边缘检测是计算机视觉中的常见任务,它可以用来识别图像中的物体。Canny边缘检测是一种常用的边缘检测算法,OpenCV中可以使用cv2.Canny()函数来进行Canny边缘检测。

import cv2
import numpy as np# 载入图像
img = cv2.imread('image.jpg',0)# 进行Canny边缘检测
edges = cv2.Canny(img,100,200)# 显示处理结果
cv2.imshow('edges',edges)
cv2.waitKey(0)
cv2.destroyAllWindows()

4.4 图像滤波

图像滤波是计算机视觉中常见的图像预处理方法,OpenCV提供了各种滤波函数,如cv2.filter2D()cv2.blur()cv2.GaussianBlur()等。

import cv2
import numpy as np# 载入图像
img = cv2.imread('image.jpg')# 使用高斯滤波进行图像平滑处理
blur = cv2.GaussianBlur(img,(5,5),0)# 显示处理结果
cv2.imshow('blur',blur)
cv2.waitKey(0)
cv2.destroyAllWindows()

4.5 图像形态学操作

形态学操作是基于图像形状的一系列操作,包括腐蚀、膨胀、开运算和闭运算等。OpenCV提供了cv2.erode()cv2.dilate()cv2.morphologyEx()等函数来进行形态学操作。

import cv2
import numpy as np# 载入图像
img = cv2.imread('image.jpg',0)# 创建一个5x5的结构元素
kernel = np.ones((5,5),np.uint8)# 进行膨胀操作
dilation = cv2.dilate(img,kernel,iterations = 1)# 显示处理结果
cv2.imshow('dilation',dilation)
cv2.waitKey(0)
cv2.destroyAllWindows()

结尾

这篇关于【机器学习】图像处理与深度学习利器:OpenCV实战攻略全面解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132678

相关文章

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

在C#中合并和解析相对路径方式

《在C#中合并和解析相对路径方式》Path类提供了几个用于操作文件路径的静态方法,其中包括Combine方法和GetFullPath方法,Combine方法将两个路径合并在一起,但不会解析包含相对元素... 目录C#合并和解析相对路径System.IO.Path类幸运的是总结C#合并和解析相对路径对于 C

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

Java解析JSON的六种方案

《Java解析JSON的六种方案》这篇文章介绍了6种JSON解析方案,包括Jackson、Gson、FastJSON、JsonPath、、手动解析,分别阐述了它们的功能特点、代码示例、高级功能、优缺点... 目录前言1. 使用 Jackson:业界标配功能特点代码示例高级功能优缺点2. 使用 Gson:轻量

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

python解析HTML并提取span标签中的文本

《python解析HTML并提取span标签中的文本》在网页开发和数据抓取过程中,我们经常需要从HTML页面中提取信息,尤其是span元素中的文本,span标签是一个行内元素,通常用于包装一小段文本或... 目录一、安装相关依赖二、html 页面结构三、使用 BeautifulSoup javascript

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert