深度学习-用神经网络NN实现足球大小球数据分析软件

本文主要是介绍深度学习-用神经网络NN实现足球大小球数据分析软件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、 数据收集
    • 1.1特征数据收集
    • 代码实例
  • 二、数据预处理
    • 清洗数据
    • 特征工程:
  • 三、特征提取
  • 四、模型构建
  • 五、模型训练与评估
  • 总结


前言

预测足球比赛走地大小球(即比赛过程中进球总数是否超过某个预设值)的深度学习模型是一个复杂但有趣的项目。这里,我将概述一个基本的实现流程,包括数据收集、特征提取、模型构建、训练和评估。由于直接编写完整的代码在这里不太现实,我将提供关键步骤的代码和概念说明。

一、 数据收集

1.1特征数据收集

首先,你需要收集大量的足球比赛数据,包括但不限于:

  • 比赛结果(主队进球数、客队进球数)
  • 比赛时间(全场、半场)
  • 球队历史表现(近期胜率、进球率、失球率)
  • 球队阵容(关键球员是否上场)
  • 天气条件
  • 球场信息
  • 裁判因素(可选,可能影响比赛风格)
  • 赛事类型(联赛、杯赛、友谊赛等)
  • 球队间历史交锋记录

代码实例

这里用python实现足球赛事数据的收集,如果是走地数据分析的话,需要用定时任务即时采集,这里只是简单的爬取和入库

import requests  
import sqlite3  
import json  # 国外赛事数据 
api_url = 'https://xxxx.com/data'  # 连接到SQLite数据库  
# 如果数据库不存在,它会自动创建  
conn = sqlite3.connect('football_data.db')  
c = conn.cursor()  # 创建一个表来存储数据  
# 假设API返回的数据包含'team', 'goals', 'matches'等字段  
c.execute('''CREATE TABLE IF NOT EXISTS teams  (id INTEGER PRIMARY KEY AUTOINCREMENT,  team TEXT NOT NULL,  goals INTEGER,  matches INTEGER)''')  # 从API获取数据  
def fetch_data(url):  try:  response = requests.get(url)  response.raise_for_status()  # 如果响应状态码不是200,将引发HTTPError异常  return response.json()  except requests.RequestException as e:  print(e)  return None  # 解析数据并插入到数据库中  
def insert_data(data):  for item in data:  # 假设每个item都是一个包含'team', 'goals', 'matches'的字典  c.execute("INSERT INTO teams (team, goals, matches) VALUES (?, ?, ?)",  (item['team'], item['goals'], item['matches']))  conn.commit()  # 获取数据并插入  
data = fetch_data(api_url)  
if data:  insert_data(data)  # 关闭数据库连接  
conn.close()  print("数据已成功获取并入库。")

二、数据预处理

清洗数据

数据清洗通常涉及多个步骤,包括处理缺失值、异常值、重复数据、数据类型转换、数据格式标准化等,这里用pandas简单的进行数据处理。

import pandas as pd  
import sqlite3  # 连接到SQLite数据库  
conn = sqlite3.connect('football_data.db')  # 使用Pandas的read_sql_query函数从数据库中读取数据  
# 假设'matches'表包含'id', 'home_team', 'away_team', 'home_goals', 'away_goals'等字段  
query = "SELECT * FROM matches"  
df = pd.read_sql_query(query, conn)  # 数据清洗步骤  # 1. 处理异常数据  
# 假设进球数不可能为负数或超过某个合理值(如10个)  
# 这里我们将进球数限制在0到10之间  
df['home_goals'] = df['home_goals'].apply(lambda x: x if 0 <= x <= 10 else 0)  
df['away_goals'] = df['away_goals'].apply(lambda x: x if 0 <= x <= 10 else 0)  # 2. 处理缺失值  
# 假设我们决定删除任何包含缺失值的行(这通常不是最佳实践,但在这里作为示例)  
df.dropna(inplace=True)  # 3. 检查并处理其他潜在问题(如重复数据等)  
# 这里我们假设没有重复的比赛ID,但如果有,可以使用drop_duplicates()删除  
# df.drop_duplicates(subset='id', keep='first', inplace=True)  # 4. (可选)将清洗后的数据写回数据库或保存到新的CSV文件  
# 如果要写回数据库,请确保表已存在或先创建表  
# 如果要保存到CSV文件  
df.to_csv('cleaned_football_data.csv', index=False)  # 关闭数据库连接  
conn.close()  # 查看清洗后的数据(可选)  
print(df.head())

特征工程:

这里简单的用下面几个关键信息作为特征数据

  • 进球率:计算球队近期比赛的进球平均数。
  • 失球率:计算球队近期比赛的失球平均数。
  • 胜率:计算球队近期比赛的胜率。
  • 主客场优势:考虑主队或客队的历史主场/客场胜率。
  • 时间因素:考虑比赛进行的时间段(如开场、中场、结束前)对进球数的影响。
  • 让球因素:转换为数值型特征,如让一球则主队进球数需减去一。
  • 编码分类变量:如赛事类型、球场类型等。

三、特征提取

前面已经将特征数据都处理好了,下面开始对特征数据提取。


# 假设df是Pandas DataFrame,包含所有比赛数据  # 计算近期进球率(以最近5场为例)  
def calculate_recent_goals(df, team_column, goals_column, window_size=5):  df[f'{team_column}_recent_goals'] = df.groupby(team_column)[goals_column].rolling(window=window_size, min_periods=1).mean()  # 类似地,可以计算失球率、胜率等  # 编码分类变量  
df['venue'] = pd.Categorical(df['venue']).codes  # 假设venue是主客场信息  # 提取特征  
features = ['home_team_recent_goals', 'away_team_recent_goals', 'venue', 'match_time_segment', 'handicap']  
X = df[features]  # 提取标签  
# 假设label_big_small是判断大小球的标签(0: 小球, 1: 大球)  
# label_handicap_win是判断让球胜负的标签(0: 负, 1: 胜)  
y_big_small = df['label_big_small']  
y_handicap_win = df['label_handicap_win']

分析出球队的具体整体情况
在这里插入图片描述

四、模型构建

from keras.models import Sequential  
from keras.layers import Dense  # 构建模型  
model = Sequential([  Dense(64, activation='relu', input_shape=(X.shape[1],)),  Dense(64, activation='relu'),  Dense(1, activation='sigmoid')  # 二分类问题使用sigmoid  
])  model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

在这里插入图片描述

五、模型训练与评估

# 划分训练集和测试集  
from sklearn.model_selection import train_test_split  
X_train, X_test, y_train_big_small, y_test_big_small = train_test_split(X, y_big_small, test_size=0.2, random_state=42)  # 训练模型  
model.fit(X_train, y_train_big_small, epochs=10, batch_size=32, validation_split=0.2)  # 评估模型  
loss, accuracy = model.evaluate(X_test, y_test_big_small)  
print(f"Test Accuracy: {accuracy:.2f}")  # 类似地,可以训练并评估让球胜负预测模型
得出预测结果

在这里插入图片描述

总结

上面只是简单的介绍了大模型的实现过程,实际过程比这个复杂很多,其中特征数据就包括了球队过去的进球数、失球数、射门次数、射正次数等统计数据,不同的球队有不同的战术风格,如攻势足球、防守反击等。攻势足球风格的球队通常进球较多,而防守反击的球队则可能更加注重控制球权和减少失球,球员的当前状态对比赛结果有直接影响。状态良好的球员在比赛中更有可能发挥出色,从而增加进球的可能性。

鸣谢:AIAutoPrediction足球数据分析平台提供的足球数据分析

在这里插入图片描述

这篇关于深度学习-用神经网络NN实现足球大小球数据分析软件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132139

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一