线性代数 第五讲:线性方程组_齐次线性方程组_非齐次线性方程组_公共解同解方程组_详解

本文主要是介绍线性代数 第五讲:线性方程组_齐次线性方程组_非齐次线性方程组_公共解同解方程组_详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性方程组

文章目录

  • 线性方程组
  • 1.齐次线性方程组的求解
    • 1.1 核心要义
    • 1.2 基础解系与线性无关的解向量的个数
    • 1.3 计算使用举例
  • 2. 非齐次线性方程的求解
    • 2.1 非齐次线性方程解的判定
    • 2.2 非齐次线性方程解的结构
    • 2.3 计算使用举例
  • 3.公共解与同解
    • 3.1 两个方程组的公共解
    • 3.2 同解方程组
  • 4.重难点题型总结
    • 4.1 抽象齐次线性方程组的求解
    • 4.1 含有系数的非齐次线性方程组的求解及有条件求全部解问题

解方程组是重点,把握命题侧重点,大致类型如下
(1)已知方程组
同解变形(行变换),讨论参数
(2)抽象方程组
秩,解的结构,推理分析

1.齐次线性方程组的求解

1.1 核心要义

核心要义:零解与非零解

零解情况
齐次线性方程组肯定存在零解,没有无解的情况。
满足r(A)=n,n个列向量都是线性无关的。

有非零解情况
齐次线性方程组有非零解
⇔秩r(A)<n
⇔A的列向量线性相关

解释说明如下:
齐次线性方程组必有零解,这没什么好说的,关键是齐次线性方程组是否存在非零解。
若r(A)<n,则齐次线性方程组存在非零解,A矩阵的秩=列向量组的秩,n就是未知数的个数(列向量的个数),A秩小,说明 在未知数个数的列向量是线性相关的。因为假如线性无关,肯定有r(A)=n。

特别的
1.扁长形的齐次线性方程必有非零解

A-m*n,m<n,则AX=0必有非0解,即r(A)≤r(m)<r(n)

2.A为方阵n*n,AX=0有非0解⇔|A|=0(克莱默法则)

1.2 基础解系与线性无关的解向量的个数

基础解系:解向量的极大线性无关组

线性无关的解向量的个数为:n-r(A),且AX=0的任一个解可以由这n-r(A)个线性无关的解线性表示,如η1η2…ηt是AX=0的解,则k1η1+k2η2+…ktηt是AX=0的解

解释说明:关于n-r(A)怎么来的不需要知道,证明需要零向量相关

总结:
明确AX=0的基础解系三条法则:

  1. η1η2…ηt是AX=0的解
  2. η1η2…ηt线性无关
  3. AX=0的任一解都可以由η1η2…ηt线性表示

如何证明η1η2…ηt是AX=0的基础解系?(小证明)

  1. 验证A.ηi=0
  2. 证明η1η2…ηt线性无关
  3. 说明t=n-r(A)

1.3 计算使用举例

第一步:
第一步肯定把系数矩阵化成行最简形矩阵
第二步:
用n-r(A)明确线性无关解的个数,将列向量划分为主元和自由变量,主元是含1的行最简,自由变量就是非主元了,自由变量的个数就是线性无关解的个数。
将自由变量位置用线性无关的单位向量取代如 ( 1 0 0 1 ) ( 1 0 0 0 1 0 0 0 1 ) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} (1001) 100010001

第三步:
通过计算补全其余部分,第三步有两种方法,推荐第二种,节约时间。

方法实例如下:
在这里插入图片描述

练习如下:
在这里插入图片描述

2. 非齐次线性方程的求解

2.1 非齐次线性方程解的判定

非齐次线性方程的解有两种大的情况:有解和无解
1.有解分为有唯一解和无穷多解
2.无解

AX=b有解,要满足系数矩阵的秩r(A)=其增广矩阵的秩 A ‾ \overline{A} A
AX=b无解,就是r(A)≠ A ‾ \overline{A} A,实际上它们之间的差值只能是1,因为等号右边的常数项,只组成了一个列向量。

AX=b有解情况下
r(A)= A ‾ \overline{A} A=n,有唯一解
r(A)= A ‾ \overline{A} A<n,有无穷多解

2.2 非齐次线性方程解的结构

解的结构是:它的一个解(特解)+其对应的齐次线性方程的解

2.3 计算使用举例

计算使用举例,就讲和齐次线性方程不一样的点,首先是解的结构,多了一个特解,特解的计算有技巧,在自由变量的对应位置,齐次方程写的是单位矩阵,特解写的是 0矩阵,所以,等号右边的b直接就可以抄到特解上。

具体实例:
在这里插入图片描述

3.公共解与同解

3.1 两个方程组的公共解

公共解问题,关于给出两个方程组的基础解系问题,求公共解问题值得深入思考

公共解的概念:如果α是方程组(I)的解,也是方程组(II)的解,则称α是方程组(I)和方程组(II)的公共解。

求公共解问题的题型总结

  • 已知两个方程组,求它们的公共解
  • 已知两个方程组的基础解系,求它们的公共解
  • 已知一个方程组和另一个方程组的基础解系,求它们的公共解

第一类问题,已知两个方程组,求它们的公共解
已知(I)AX=0,(II)BX=0,求它们的公共解
[ A B ] X = 0 \left[\begin{matrix} A \\ B \\ \end{matrix}\right]X = 0 [AB]X=0

解释说明,竖着拼接上求齐次线性方程组即可,此时的解向量既满足AX=0,也满足BX=0

第二类问题,已知两个方程组的基础解系,求它们的公共解

思路梳理如下:
假设方程组(I)的基础解系为k1ξ1+k2ξ2
假设方程组(II)的基础解系为L1η1+L2η2
1.设公共解为r,r=k1ξ1+k2ξ2,r=L1η1+L2η2,注意此时的k1和k2,L1和L2跟基础解系中的k1和k2,L1和L2不是一样的,公共解只是基础解系的一部分,所以基础解系的k和公共解的k肯定不同的,这里只是设的一个未知数的形式。求解该类问题的目标其实就是找到k1,k2或L1,L2它们是什么?也就是它们之间有什么关系?(在添加了约束条件后,这个约束条件就是对面的基础解系)

2.令公共解相同可得到k1ξ1+k2ξ2=L1η1+L2η2,移项得k1ξ1+k2ξ2-L1η1-L2η2=0,得到一个齐次线性方程组,此时它们之间就联系起来了,k1,k2,L1,L2看成未知向量组X,ξ1,ξ2,L1,L1看成A,此时就变成了AX=0,k1,k2,L1,L2就是对应的x1,x2,x3,x4
3.解该齐次线性方程组,设新的系数,整理该齐次线性方程组的同解,得到k1,k2或L1,L2的关系,就能写成此时它们的公共解了。

给出例题:
(2002.4)
在这里插入图片描述

(张宇基础书上例题4.12)
在这里插入图片描述

已知一个方程组和另一个方程组的基础解系,求它们的公共解
求出一个方程组的基础解系,转化为第二类问题。

3.2 同解方程组

若α是(I)的解,则α一定是(II)的解,反之,若α是(II)的解,则必是(I)的解,就称(I)与(II)同解。
在这里插入图片描述

4.重难点题型总结

4.1 抽象齐次线性方程组的求解

例题1:
在这里插入图片描述

例题2:
在这里插入图片描述

例题3:
在这里插入图片描述

4.1 含有系数的非齐次线性方程组的求解及有条件求全部解问题

例题如下:
积累点:
1.含有参数的非齐次方程组的化简成行最简的过程
2.分类讨论

在这里插入图片描述

这篇关于线性代数 第五讲:线性方程组_齐次线性方程组_非齐次线性方程组_公共解同解方程组_详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131621

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

poj1330(LCA最近公共祖先)

题意:求最近公共祖先 思路:之前学习了树链剖分,然后我就用树链剖分的一小部分知识就可以解这个题目了,记录每个结点的fa和depth。然后查找时,每次将depth大的结点往上走直到x = y。 代码如下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstring>

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

LabVIEW FIFO详解

在LabVIEW的FPGA开发中,FIFO(先入先出队列)是常用的数据传输机制。通过配置FIFO的属性,工程师可以在FPGA和主机之间,或不同FPGA VIs之间进行高效的数据传输。根据具体需求,FIFO有多种类型与实现方式,包括目标范围内FIFO(Target-Scoped)、DMA FIFO以及点对点流(Peer-to-Peer)。 FIFO类型 **目标范围FIFO(Target-Sc

019、JOptionPane类的常用静态方法详解

目录 JOptionPane类的常用静态方法详解 1. showInputDialog()方法 1.1基本用法 1.2带有默认值的输入框 1.3带有选项的输入对话框 1.4自定义图标的输入对话框 2. showConfirmDialog()方法 2.1基本用法 2.2自定义按钮和图标 2.3带有自定义组件的确认对话框 3. showMessageDialog()方法 3.1

脏页的标记方式详解

脏页的标记方式 一、引言 在数据库系统中,脏页是指那些被修改过但还未写入磁盘的数据页。为了有效地管理这些脏页并确保数据的一致性,数据库需要对脏页进行标记。了解脏页的标记方式对于理解数据库的内部工作机制和优化性能至关重要。 二、脏页产生的过程 当数据库中的数据被修改时,这些修改首先会在内存中的缓冲池(Buffer Pool)中进行。例如,执行一条 UPDATE 语句修改了某一行数据,对应的缓